2013-09-07 00:12:35 +00:00
|
|
|
Set: pp::colors
|
|
|
|
Set: pp::unicode
|
|
|
|
Assumed: C
|
|
|
|
Assumed: D
|
|
|
|
Assumed: R
|
|
|
|
Proved: R2
|
2013-12-06 21:23:20 +00:00
|
|
|
Theorem R2 (A A' B B' : Type) (H : (A → B) = (A' → B')) (a : A) : B = B' := R A A' (λ x : A, B) (λ x : A', B') H a
|
2013-09-07 00:12:35 +00:00
|
|
|
Proved: R3
|
|
|
|
Proved: R4
|
|
|
|
Proved: R5
|
2013-12-06 21:23:20 +00:00
|
|
|
Theorem R5 (A1 A2 B1 B2 : Type) (H : (A1 → B1) = (A2 → B2)) (a : A1) : B1 = B2 :=
|
2013-10-24 22:42:17 +00:00
|
|
|
R A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|