lean2/tests/lean/slow/path_groupoids.lean

627 lines
24 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad
-- Ported from Coq HoTT
notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r
abbreviation id {A : Type} (a : A) := a
abbreviation compose {A : Type} {B : Type} {C : Type} (g : B → C) (f : A → B) := λ x, g (f x)
infixl `∘`:60 := compose
-- Path
-- ----
inductive path {A : Type} (a : A) : A → Type :=
idpath : path a a
abbreviation idpath := @path.idpath
infix `≈`:50 := path
-- TODO: is this right?
notation x `≈` y:50 `:>`:0 A:0 := @path A x y
notation `idp`:max := idpath _ -- TODO: can we / should we use `1`?
namespace path
abbreviation induction_on {A : Type} {a b : A} (p : a ≈ b)
{C : Π (b : A) (p : a ≈ b), Type} (H : C a (idpath a)) : C b p :=
path.rec H p
end path
open path
-- Concatenation and inverse
-- -------------------------
definition concat {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : x ≈ z :=
path.rec (λu, u) q p
-- TODO: should this be an abbreviation?
definition inverse {A : Type} {x y : A} (p : x ≈ y) : y ≈ x :=
path.rec (idpath x) p
infixl `@`:75 := concat
postfix `^`:100 := inverse
-- In Coq, these are not needed, because concat and inv are kept transparent
definition inv_1 {A : Type} (x : A) : (idpath x)^ ≈ idpath x := idp
definition concat_11 {A : Type} (x : A) : idpath x @ idpath x ≈ idpath x := idp
-- The 1-dimensional groupoid structure
-- ------------------------------------
-- The identity path is a right unit.
definition concat_p1 {A : Type} {x y : A} (p : x ≈ y) : p @ idp ≈ p :=
induction_on p idp
-- The identity path is a right unit.
definition concat_1p {A : Type} {x y : A} (p : x ≈ y) : idp @ p ≈ p :=
induction_on p idp
-- Concatenation is associative.
definition concat_p_pp {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
p @ (q @ r) ≈ (p @ q) @ r :=
induction_on r (induction_on q idp)
definition concat_pp_p {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
(p @ q) @ r ≈ p @ (q @ r) :=
induction_on r (induction_on q idp)
-- The left inverse law.
definition concat_pV {A : Type} {x y : A} (p : x ≈ y) : p @ p^ ≈ idp :=
induction_on p idp
-- The right inverse law.
definition concat_Vp {A : Type} {x y : A} (p : x ≈ y) : p^ @ p ≈ idp :=
induction_on p idp
-- Several auxiliary theorems about canceling inverses across associativity. These are somewhat
-- redundant, following from earlier theorems.
definition concat_V_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : p^ @ (p @ q) ≈ q :=
induction_on q (induction_on p idp)
definition concat_p_Vp {A : Type} {x y z : A} (p : x ≈ y) (q : x ≈ z) : p @ (p^ @ q) ≈ q :=
induction_on q (induction_on p idp)
definition concat_pp_V {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p @ q) @ q^ ≈ p :=
induction_on q (induction_on p idp)
definition concat_pV_p {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) : (p @ q^) @ q ≈ p :=
induction_on q (take p, induction_on p idp) p
-- Inverse distributes over concatenation
definition inv_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p @ q)^ ≈ q^ @ p^ :=
induction_on q (induction_on p idp)
definition inv_Vp {A : Type} {x y z : A} (p : y ≈ x) (q : y ≈ z) : (p^ @ q)^ ≈ q^ @ p :=
induction_on q (induction_on p idp)
-- universe metavariables
definition inv_pV {A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y) : (p @ q^)^ ≈ q @ p^ :=
induction_on p (λq, induction_on q idp) q
definition inv_VV {A : Type} {x y z : A} (p : y ≈ x) (q : z ≈ y) : (p^ @ q^)^ ≈ q @ p :=
induction_on p (induction_on q idp)
-- Inverse is an involution.
definition inv_V {A : Type} {x y : A} (p : x ≈ y) : p^^ ≈ p :=
induction_on p idp
-- Theorems for moving things around in equations
-- ----------------------------------------------
definition moveR_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
p ≈ (r^ @ q) → (r @ p) ≈ q :=
have gen : Πp q, p ≈ (r^ @ q) → (r @ p) ≈ q, from
induction_on r
(take p q,
assume h : p ≈ idp^ @ q,
show idp @ p ≈ q, from concat_1p _ @ h @ concat_1p _),
gen p q
definition moveR_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
r ≈ q @ p^ → r @ p ≈ q :=
induction_on p (take q r h, (concat_p1 _ @ h @ concat_p1 _)) q r
definition moveR_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
p ≈ r @ q → r^ @ p ≈ q :=
induction_on r (take p q h, concat_1p _ @ h @ concat_1p _) p q
definition moveR_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
r ≈ q @ p → r @ p^ ≈ q :=
induction_on p (take q r h, concat_p1 _ @ h @ concat_p1 _) q r
definition moveL_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
r^ @ q ≈ p → q ≈ r @ p :=
induction_on r (take p q h, (concat_1p _)^ @ h @ (concat_1p _)^) p q
definition moveL_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
q @ p^ ≈ r → q ≈ r @ p :=
induction_on p (take q r h, (concat_p1 _)^ @ h @ (concat_p1 _)^) q r
definition moveL_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
r @ q ≈ p → q ≈ r^ @ p :=
induction_on r (take p q h, (concat_1p _)^ @ h @ (concat_1p _)^) p q
definition moveL_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
q @ p ≈ r → q ≈ r @ p^ :=
induction_on p (take q r h, (concat_p1 _)^ @ h @ (concat_p1 _)^) q r
definition moveL_1M {A : Type} {x y : A} (p q : x ≈ y) :
p @ q^ ≈ idp → p ≈ q :=
induction_on q (take p h, (concat_p1 _)^ @ h) p
definition moveL_M1 {A : Type} {x y : A} (p q : x ≈ y) :
q^ @ p ≈ idp → p ≈ q :=
induction_on q (take p h, (concat_1p _)^ @ h) p
definition moveL_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
p @ q ≈ idp → p ≈ q^ :=
induction_on q (take p h, (concat_p1 _)^ @ h) p
definition moveL_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
q @ p ≈ idp → p ≈ q^ :=
induction_on q (take p h, (concat_1p _)^ @ h) p
definition moveR_M1 {A : Type} {x y : A} (p q : x ≈ y) :
idp ≈ p^ @ q → p ≈ q :=
induction_on p (take q h, h @ (concat_1p _)) q
definition moveR_1M {A : Type} {x y : A} (p q : x ≈ y) :
idp ≈ q @ p^ → p ≈ q :=
induction_on p (take q h, h @ (concat_p1 _)) q
definition moveR_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
idp ≈ q @ p → p^ ≈ q :=
induction_on p (take q h, h @ (concat_p1 _)) q
definition moveR_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
idp ≈ p @ q → p^ ≈ q :=
induction_on p (take q h, h @ (concat_1p _)) q
-- Transport
-- ---------
-- keep transparent, so transport _ idp p is definitionally equal to p
abbreviation transport {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) : P y :=
path.induction_on p u
definition transport_1 {A : Type} (P : A → Type) {x : A} (u : P x) : transport _ idp u ≈ u :=
idp
-- TODO: is the binding strength on x reasonable? (It is modeled on the notation for subst
-- in the standard library.)
-- This idiom makes the operation right associative.
notation p `#`:65 x:64 := transport _ p x
definition ap ⦃A B : Type⦄ (f : A → B) {x y:A} (p : x ≈ y) : f x ≈ f y :=
path.induction_on p idp
-- TODO: is this better than an alias? Note use of curly brackets
abbreviation ap01 := ap
abbreviation pointwise_paths {A : Type} {P : A → Type} (f g : Πx, P x) : Type :=
Πx : A, f x ≈ g x
infix ``:50 := pointwise_paths
definition apD10 {A} {B : A → Type} {f g : Πx, B x} (H : f ≈ g) : f g :=
λx, path.induction_on H idp
definition ap10 {A B} {f g : A → B} (H : f ≈ g) : f g := apD10 H
definition ap11 {A B} {f g : A → B} (H : f ≈ g) {x y : A} (p : x ≈ y) : f x ≈ g y :=
induction_on H (induction_on p idp)
-- TODO: Note that the next line breaks the proof!
-- opaque_hint (hiding induction_on)
-- set_option pp.implicit true
definition apD {A:Type} {B : A → Type} (f : Πa:A, B a) {x y : A} (p : x ≈ y) : p # (f x) ≈ f y :=
induction_on p idp
-- More theorems for moving things around in equations
-- ---------------------------------------------------
definition moveR_transport_p {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
u ≈ p^ # v → p # u ≈ v :=
induction_on p (take u v, id) u v
definition moveR_transport_V {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
u ≈ p # v → p^ # u ≈ v :=
induction_on p (take u v, id) u v
definition moveL_transport_V {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
p # u ≈ v → u ≈ p^ # v :=
induction_on p (take u v, id) u v
definition moveL_transport_p {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
p^ # u ≈ v → u ≈ p # v :=
induction_on p (take u v, id) u v
-- Functoriality of functions
-- --------------------------
-- Here we prove that functions behave like functors between groupoids, and that [ap] itself is
-- functorial.
-- Functions take identity paths to identity paths
definition ap_1 {A B : Type} (x : A) (f : A → B) : (ap f idp) ≈ idp :> (f x ≈ f x) := idp
definition apD_1 {A B} (x : A) (f : forall x : A, B x) : apD f idp ≈ idp :> (f x ≈ f x) := idp
-- Functions commute with concatenation.
definition ap_pp {A B : Type} (f : A → B) {x y z : A} (p : x ≈ y) (q : y ≈ z) :
ap f (p @ q) ≈ (ap f p) @ (ap f q) :=
induction_on q (induction_on p idp)
definition ap_p_pp {A B : Type} (f : A → B) {w x y z : A} (r : f w ≈ f x) (p : x ≈ y) (q : y ≈ z) :
r @ (ap f (p @ q)) ≈ (r @ ap f p) @ (ap f q) :=
induction_on p (take r q, induction_on q (concat_p_pp r idp idp)) r q
definition ap_pp_p {A B : Type} (f : A → B) {w x y z : A} (p : x ≈ y) (q : y ≈ z) (r : f z ≈ f w) :
(ap f (p @ q)) @ r ≈ (ap f p) @ (ap f q @ r) :=
induction_on p (take q, induction_on q (take r, concat_pp_p _ _ _)) q r
-- Functions commute with path inverses.
definition inverse_ap {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : (ap f p)^ ≈ ap f (p^) :=
induction_on p idp
definition ap_V {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : ap f (p^) ≈ (ap f p)^ :=
induction_on p idp
-- TODO: rename id to idmap?
definition ap_idmap {A : Type} {x y : A} (p : x ≈ y) : ap id p ≈ p :=
induction_on p idp
definition ap_compose {A B C : Type} (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
ap (g ∘ f) p ≈ ap g (ap f p) :=
induction_on p idp
-- Sometimes we don't have the actual function [compose].
definition ap_compose' {A B C : Type} (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
ap (λa, g (f a)) p ≈ ap g (ap f p) :=
induction_on p idp
-- The action of constant maps.
definition ap_const {A B : Type} {x y : A} (p : x ≈ y) (z : B) :
ap (λu, z) p ≈ idp :=
induction_on p idp
-- Naturality of [ap].
definition concat_Ap {A B : Type} {f g : A → B} (p : forall x, f x ≈ g x) {x y : A} (q : x ≈ y) :
(ap f q) @ (p y) ≈ (p x) @ (ap g q) :=
induction_on q (concat_1p _ @ (concat_p1 _)^)
-- Naturality of [ap] at identity.
definition concat_A1p {A : Type} {f : A → A} (p : forall x, f x ≈ x) {x y : A} (q : x ≈ y) :
(ap f q) @ (p y) ≈ (p x) @ q :=
induction_on q (concat_1p _ @ (concat_p1 _)^)
definition concat_pA1 {A : Type} {f : A → A} (p : forall x, x ≈ f x) {x y : A} (q : x ≈ y) :
(p x) @ (ap f q) ≈ q @ (p y) :=
induction_on q (concat_p1 _ @ (concat_1p _)^)
--TODO: note that the Coq proof for the preceding is
--
-- match q as i in (_ ≈ y) return (p x @ ap f i ≈ i @ p y) with
-- | idpath => concat_p1 _ @ (concat_1p _)^
-- end.
--
-- It is nice that we don't have to give the predicate.
-- Naturality with other paths hanging around.
definition concat_pA_pp {A B : Type} {f g : A → B} (p : forall x, f x ≈ g x)
{x y : A} (q : x ≈ y)
{w z : B} (r : w ≈ f x) (s : g y ≈ z) :
(r @ ap f q) @ (p y @ s) ≈ (r @ p x) @ (ap g q @ s) :=
induction_on q (take s, induction_on s (take r, idp)) s r
-- Action of [apD10] and [ap10] on paths
-- -------------------------------------
-- Application of paths between functions preserves the groupoid structure
definition apD10_1 {A} {B : A → Type} (f : Πx, B x) (x : A) : apD10 (idpath f) x ≈ idp := idp
definition apD10_pp {A} {B : A → Type} {f f' f'' : Πx, B x} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
apD10 (h @ h') x ≈ apD10 h x @ apD10 h' x :=
induction_on h (take h', induction_on h' idp) h'
definition apD10_V {A : Type} {B : A → Type} {f g : Πx : A, B x} (h : f ≈ g) (x : A) :
apD10 (h^) x ≈ (apD10 h x)^ :=
induction_on h idp
definition ap10_1 {A B} {f : A → B} (x : A) : ap10 (idpath f) x ≈ idp := idp
definition ap10_pp {A B} {f f' f'' : A → B} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
ap10 (h @ h') x ≈ ap10 h x @ ap10 h' x := apD10_pp h h' x
definition ap10_V {A B} {f g : A→B} (h : f ≈ g) (x:A) : ap10 (h^) x ≈ (ap10 h x)^ := apD10_V h x
-- [ap10] also behaves nicely on paths produced by [ap]
definition ap_ap10 {A B C} (f g : A → B) (h : B → C) (p : f ≈ g) (a : A) :
ap h (ap10 p a) ≈ ap10 (ap (λ f', h ∘ f') p) a:=
induction_on p idp
-- Transport and the groupoid structure of paths
-- ---------------------------------------------
-- TODO: move from above?
-- definition transport_1 {A : Type} (P : A → Type) {x : A} (u : P x)
-- : idp # u ≈ u := idp
definition transport_pp {A : Type} (P : A → Type) {x y z : A} (p : x ≈ y) (q : y ≈ z) (u : P x) :
p @ q # u ≈ q # p # u :=
induction_on q (induction_on p idp)
definition transport_pV {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P y) :
p # p^ # z ≈ z :=
(transport_pp P (p^) p z)^ @ ap (λr, transport P r z) (concat_Vp p)
definition transport_Vp {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) :
p^ # p # z ≈ z :=
(transport_pp P p (p^) z)^ @ ap (λr, transport P r z) (concat_pV p)
-----------------------------------------------
-- *** Examples of difficult induction problems
-----------------------------------------------
theorem double_induction
{A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z)
{C : Π(x y z : A), Π(p : x ≈ y), Π(q : y ≈ z), Type}
(H : C x x x (idpath x) (idpath x)) :
C x y z p q :=
induction_on p (take z q, induction_on q H) z q
theorem double_induction2
{A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y)
{C : Π(x y z : A), Π(p : x ≈ y), Π(q : z ≈ y), Type}
(H : C z z z (idpath z) (idpath z)) :
C x y z p q :=
induction_on p (take y q, induction_on q H) y q
theorem double_induction2'
{A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y)
{C : Π(x y z : A), Π(p : x ≈ y), Π(q : z ≈ y), Type}
(H : C z z z (idpath z) (idpath z)) : C x y z p q :=
induction_on p (take y q, induction_on q H) y q
theorem triple_induction
{A : Type} {x y z w : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ w)
{C : Π(x y z w : A), Π(p : x ≈ y), Π(q : y ≈ z), Π(r: z ≈ w), Type}
(H : C x x x x (idpath x) (idpath x) (idpath x)) :
C x y z w p q r :=
induction_on p (take z q, induction_on q (take w r, induction_on r H)) z q w r
-- try this again
definition concat_pV_p_new {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) : (p @ q^) @ q ≈ p :=
double_induction2 p q idp
definition transport_p_pp {A : Type} (P : A → Type)
{x y z w : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ w) (u : P x) :
ap (λe, e # u) (concat_p_pp p q r) @ (transport_pp P (p @ q) r u) @
ap (transport P r) (transport_pp P p q u)
≈ (transport_pp P p (q @ r) u) @ (transport_pp P q r (p # u))
:> ((p @ (q @ r)) # u ≈ r # q # p # u) :=
triple_induction p q r (take u, idp) u
-- Here is another coherence lemma for transport.
definition transport_pVp {A} (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) :
transport_pV P p (transport P p z) ≈ ap (transport P p) (transport_Vp P p z)
:= induction_on p idp
-- Dependent transport in a doubly dependent type.
definition transportD {A : Type} (B : A → Type) (C : Π a : A, B a → Type)
{x1 x2 : A} (p : x1 ≈ x2) (y : B x1) (z : C x1 y) :
C x2 (p # y) :=
induction_on p z
-- Transporting along higher-dimensional paths
definition transport2 {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : P x) :
p # z ≈ q # z := ap (λp', p' # z) r
-- An alternative definition.
definition transport2_is_ap10 {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q)
(z : Q x) :
transport2 Q r z ≈ ap10 (ap (transport Q) r) z :=
induction_on r idp
definition transport2_p2p {A : Type} (P : A → Type) {x y : A} {p1 p2 p3 : x ≈ y}
(r1 : p1 ≈ p2) (r2 : p2 ≈ p3) (z : P x) :
transport2 P (r1 @ r2) z ≈ transport2 P r1 z @ transport2 P r2 z :=
induction_on r1 (induction_on r2 idp)
-- TODO: another interesting case
definition transport2_V {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : Q x) :
transport2 Q (r^) z ≈ ((transport2 Q r z)^) :=
-- induction_on r idp -- doesn't work
induction_on r (idpath (inverse (transport2 Q (idpath p) z)))
definition concat_AT {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} {z w : P x} (r : p ≈ q)
(s : z ≈ w) :
ap (transport P p) s @ transport2 P r w ≈ transport2 P r z @ ap (transport P q) s :=
induction_on r (concat_p1 _ @ (concat_1p _)^)
-- TODO (from Coq library): What should this be called?
definition ap_transport {A} {P Q : A → Type} {x y : A} (p : x ≈ y) (f : Πx, P x → Q x) (z : P x) :
f y (p # z) ≈ (p # (f x z)) :=
induction_on p idp
-- Transporting in particular fibrations
-- -------------------------------------
/-
From the Coq HoTT library:
One frequently needs lemmas showing that transport in a certain dependent type is equal to some
more explicitly defined operation, defined according to the structure of that dependent type.
For most dependent types, we prove these lemmas in the appropriate file in the types/
subdirectory. Here we consider only the most basic cases.
-/
-- Transporting in a constant fibration.
definition transport_const {A B : Type} {x1 x2 : A} (p : x1 ≈ x2) (y : B) :
transport (λx, B) p y ≈ y :=
induction_on p idp
definition transport2_const {A B : Type} {x1 x2 : A} {p q : x1 ≈ x2} (r : p ≈ q) (y : B) :
transport_const p y ≈ transport2 (λu, B) r y @ transport_const q y :=
induction_on r (concat_1p _)^
-- Transporting in a pulled back fibration.
definition transport_compose {A B} {x y : A} (P : B → Type) (f : A → B) (p : x ≈ y) (z : P (f x)) :
transport (λx, P (f x)) p z ≈ transport P (ap f p) z :=
induction_on p idp
definition transport_precompose {A B C} (f : A → B) (g g' : B → C) (p : g ≈ g') :
transport (λh : B → C, g ∘ f ≈ h ∘ f) p idp ≈ ap (λh, h ∘ f) p :=
induction_on p idp
definition apD10_ap_precompose {A B C} (f : A → B) (g g' : B → C) (p : g ≈ g') (a : A) :
apD10 (ap (λh : B → C, h ∘ f) p) a ≈ apD10 p (f a) :=
induction_on p idp
definition apD10_ap_postcompose {A B C} (f : B → C) (g g' : A → B) (p : g ≈ g') (a : A) :
apD10 (ap (λh : A → B, f ∘ h) p) a ≈ ap f (apD10 p a) :=
induction_on p idp
-- TODO: another example where a term has to be given explicitly
-- A special case of [transport_compose] which seems to come up a lot.
definition transport_idmap_ap A (P : A → Type) x y (p : x ≈ y) (u : P x) :
transport P p u ≈ transport (λz, z) (ap P p) u :=
induction_on p (idpath (transport (λ (z : Type), z) (ap P (idpath x)) u))
-- The behavior of [ap] and [apD]
-- ------------------------------
-- In a constant fibration, [apD] reduces to [ap], modulo [transport_const].
definition apD_const {A B} {x y : A} (f : A → B) (p: x ≈ y) :
apD f p ≈ transport_const p (f x) @ ap f p :=
induction_on p idp
-- The 2-dimensional groupoid structure
-- ------------------------------------
-- Horizontal composition of 2-dimensional paths.
definition concat2 {A} {x y z : A} {p p' : x ≈ y} {q q' : y ≈ z} (h : p ≈ p') (h' : q ≈ q') :
p @ q ≈ p' @ q' :=
induction_on h (induction_on h' idp)
infixl `@@`:75 := concat2
-- 2-dimensional path inversion
definition inverse2 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : p^ ≈ q^ :=
induction_on h idp
-- Whiskering
-- ----------
definition whiskerL {A : Type} {x y z : A} (p : x ≈ y) {q r : y ≈ z} (h : q ≈ r) : p @ q ≈ p @ r :=
idp @@ h
definition whiskerR {A : Type} {x y z : A} {p q : x ≈ y} (h : p ≈ q) (r : y ≈ z) : p @ r ≈ q @ r :=
h @@ idp
-- Unwhiskering, a.k.a. cancelling
-- -------------------------------
definition cancelL {A} {x y z : A} (p : x ≈ y) (q r : y ≈ z) : (p @ q ≈ p @ r) → (q ≈ r) :=
induction_on p (take r, induction_on r (take q a, (concat_1p q)^ @ a)) r q
definition cancelR {A} {x y z : A} (p q : x ≈ y) (r : y ≈ z) : (p @ r ≈ q @ r) → (p ≈ q) :=
induction_on r (take p, induction_on p (take q a, a @ concat_p1 q)) p q
-- Whiskering and identity paths.
definition whiskerR_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
(concat_p1 p)^ @ whiskerR h idp @ concat_p1 q ≈ h :=
induction_on h (induction_on p idp)
definition whiskerR_1p {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
whiskerR idp q ≈ idp :> (p @ q ≈ p @ q) :=
induction_on q idp
definition whiskerL_p1 {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
whiskerL p idp ≈ idp :> (p @ q ≈ p @ q) :=
induction_on q idp
definition whiskerL_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
(concat_1p p) ^ @ whiskerL idp h @ concat_1p q ≈ h :=
induction_on h (induction_on p idp)
definition concat2_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
h @@ idp ≈ whiskerR h idp :> (p @ idp ≈ q @ idp) :=
induction_on h idp
definition concat2_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
idp @@ h ≈ whiskerL idp h :> (idp @ p ≈ idp @ q) :=
induction_on h idp
-- TODO: note, 4 inductions
-- The interchange law for concatenation.
definition concat_concat2 {A : Type} {x y z : A} {p p' p'' : x ≈ y} {q q' q'' : y ≈ z}
(a : p ≈ p') (b : p' ≈ p'') (c : q ≈ q') (d : q' ≈ q'') :
(a @@ c) @ (b @@ d) ≈ (a @ b) @@ (c @ d) :=
induction_on d (induction_on c (induction_on b (induction_on a idp)))
definition concat_whisker {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') :
(whiskerR a q) @ (whiskerL p' b) ≈ (whiskerL p b) @ (whiskerR a q') :=
induction_on b (induction_on a (concat_1p _)^)
-- Structure corresponding to the coherence equations of a bicategory.
-- The "pentagonator": the 3-cell witnessing the associativity pentagon.
definition pentagon {A : Type} {v w x y z : A} (p : v ≈ w) (q : w ≈ x) (r : x ≈ y) (s : y ≈ z) :
whiskerL p (concat_p_pp q r s)
@ concat_p_pp p (q @ r) s
@ whiskerR (concat_p_pp p q r) s
≈ concat_p_pp p q (r @ s) @ concat_p_pp (p @ q) r s :=
induction_on p (take q, induction_on q (take r, induction_on r (take s, induction_on s idp))) q r s
-- The 3-cell witnessing the left unit triangle.
definition triangulator {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
concat_p_pp p idp q @ whiskerR (concat_p1 p) q ≈ whiskerL p (concat_1p q) :=
induction_on p (take q, induction_on q idp) q
definition eckmann_hilton {A : Type} {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p @ q ≈ q @ p :=
(whiskerR_p1 p @@ whiskerL_1p q)^
@ (concat_p1 _ @@ concat_p1 _)
@ (concat_1p _ @@ concat_1p _)
@ (concat_whisker _ _ _ _ p q)
@ (concat_1p _ @@ concat_1p _)^
@ (concat_p1 _ @@ concat_p1 _)^
@ (whiskerL_1p q @@ whiskerR_p1 p)
-- The action of functions on 2-dimensional paths
definition ap02 {A B : Type} (f:A → B) {x y : A} {p q : x ≈ y} (r : p ≈ q) : ap f p ≈ ap f q :=
induction_on r idp
definition ap02_pp {A B} (f : A → B) {x y : A} {p p' p'' : x ≈ y} (r : p ≈ p') (r' : p' ≈ p'') :
ap02 f (r @ r') ≈ ap02 f r @ ap02 f r' :=
induction_on r (induction_on r' idp)
definition ap02_p2p {A B} (f : A→B) {x y z : A} {p p' : x ≈ y} {q q' :y ≈ z} (r : p ≈ p')
(s : q ≈ q') :
ap02 f (r @@ s) ≈ ap_pp f p q
@ (ap02 f r @@ ap02 f s)
@ (ap_pp f p' q')^ :=
induction_on r (induction_on s (induction_on q (induction_on p idp)))
definition apD02 {A : Type} {B : A → Type} {x y : A} {p q : x ≈ y} (f : Π x, B x) (r : p ≈ q) :
apD f p ≈ transport2 B r (f x) @ apD f q :=
induction_on r (concat_1p _)^