2014-12-16 21:28:43 +00:00
|
|
|
open eq sigma
|
|
|
|
|
|
|
|
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
|
|
|
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a}
|
|
|
|
|
2014-12-20 02:46:06 +00:00
|
|
|
definition path_sigma_dpair (p : a = a') (q : p ▹ b = b') : sigma.mk a b = sigma.mk a' b' :=
|
2014-12-16 21:28:43 +00:00
|
|
|
eq.rec_on p (λb b' q, eq.rec_on q idp) b b' q
|
|
|
|
|
2014-12-20 02:46:06 +00:00
|
|
|
definition path_sigma (p : pr1 u = pr1 v) (q : p ▹ pr2 u = pr2 v) : u = v :=
|
2014-12-16 21:28:43 +00:00
|
|
|
destruct u
|
|
|
|
(λu1 u2, destruct v (λ v1 v2, path_sigma_dpair))
|
|
|
|
p q
|
|
|
|
|
|
|
|
definition path_path_sigma_lemma' {p1 : a = a'} {p2 : p1 ▹ b = b'} {q2 : p1 ▹ b = b'}
|
|
|
|
(s : idp ▹ p2 = q2) : path_sigma p1 p2 = path_sigma p1 q2 :=
|
|
|
|
begin
|
|
|
|
apply (eq.rec_on s),
|
|
|
|
apply idp,
|
|
|
|
end
|