2014-11-18 07:44:57 +00:00
|
|
|
import data.nat logic.cast
|
|
|
|
open nat
|
|
|
|
|
|
|
|
inductive fin : nat → Type :=
|
|
|
|
fz : Π n, fin (succ n),
|
|
|
|
fs : Π {n}, fin n → fin (succ n)
|
|
|
|
|
|
|
|
namespace fin
|
|
|
|
|
|
|
|
definition z_cases_on (C : fin zero → Type) (p : fin zero) : C p :=
|
2014-11-29 06:46:06 +00:00
|
|
|
by cases p
|
2014-11-18 07:44:57 +00:00
|
|
|
|
|
|
|
definition nz_cases_on {C : Π n, fin (succ n) → Type}
|
|
|
|
(H₁ : Π n, C n (fz n))
|
|
|
|
(H₂ : Π n (f : fin n), C n (fs f))
|
|
|
|
{n : nat}
|
|
|
|
(f : fin (succ n)) : C n f :=
|
2014-11-29 06:46:06 +00:00
|
|
|
begin
|
|
|
|
cases f with (n', n', f'),
|
|
|
|
apply (H₁ n'),
|
|
|
|
apply (H₂ n' f')
|
|
|
|
end
|
2014-11-18 07:44:57 +00:00
|
|
|
|
|
|
|
definition to_nat {n : nat} (f : fin n) : nat :=
|
|
|
|
fin.rec_on f
|
|
|
|
(λ n, zero)
|
|
|
|
(λ n f r, succ r)
|
|
|
|
|
|
|
|
theorem to_nat.lt {n : nat} (f : fin n) : to_nat f < n :=
|
|
|
|
fin.rec_on f
|
|
|
|
(λ n, calc
|
|
|
|
to_nat (fz n) = 0 : rfl
|
|
|
|
... < succ n : succ_pos n)
|
|
|
|
(λ n f ih, calc
|
|
|
|
to_nat (fs f) = succ (to_nat f) : rfl
|
|
|
|
... < succ n : succ_lt ih)
|
|
|
|
|
|
|
|
definition lift {n : nat} (f : fin n) : Π m, fin (m + n) :=
|
|
|
|
fin.rec_on f
|
|
|
|
(λ n m, fz (m + n))
|
|
|
|
(λ n f ih m, fs (ih m))
|
|
|
|
|
|
|
|
theorem to_nat.lift {n : nat} (f : fin n) : ∀m, to_nat f = to_nat (lift f m) :=
|
|
|
|
fin.rec_on f
|
|
|
|
(λ n m, rfl)
|
|
|
|
(λ n f ih m, calc
|
|
|
|
to_nat (fs f) = succ (to_nat f) : rfl
|
|
|
|
... = succ (to_nat (lift f m)) : ih
|
|
|
|
... = to_nat (lift (fs f) m) : rfl)
|
|
|
|
|
|
|
|
private definition of_nat_core (p : nat) : fin (succ p) :=
|
|
|
|
nat.rec_on p
|
|
|
|
(fz zero)
|
|
|
|
(λ a r, fs r)
|
|
|
|
|
|
|
|
private theorem to_nat.of_nat_core (p : nat) : to_nat (of_nat_core p) = p :=
|
|
|
|
nat.induction_on p
|
|
|
|
rfl
|
|
|
|
(λ p₁ ih, calc
|
|
|
|
to_nat (of_nat_core (succ p₁)) = succ (to_nat (of_nat_core p₁)) : rfl
|
|
|
|
... = succ p₁ : ih)
|
|
|
|
|
2014-11-22 08:15:51 +00:00
|
|
|
private lemma of_nat_eq {p n : nat} (H : p < n) : n - succ p + succ p = n :=
|
2014-11-30 23:07:09 +00:00
|
|
|
add_sub_ge_left (succ_le_of_lt H)
|
2014-11-18 07:44:57 +00:00
|
|
|
|
|
|
|
definition of_nat (p : nat) (n : nat) : p < n → fin n :=
|
|
|
|
λ H : p < n,
|
|
|
|
eq.rec_on (of_nat_eq H) (lift (of_nat_core p) (n - succ p))
|
|
|
|
|
|
|
|
theorem of_nat_def (p : nat) (n : nat) (H : p < n) : of_nat p n H = eq.rec_on (of_nat_eq H) (lift (of_nat_core p) (n - succ p)) :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem of_nat_heq (p : nat) (n : nat) (H : p < n) : of_nat p n H == lift (of_nat_core p) (n - succ p) :=
|
|
|
|
heq.symm (eq_rec_to_heq (eq.symm (of_nat_def p n H)))
|
|
|
|
|
|
|
|
theorem to_nat.of_nat (p : nat) (n : nat) (H : p < n) : to_nat (of_nat p n H) = p :=
|
|
|
|
have aux₁ : to_nat (of_nat p n H) == to_nat (lift (of_nat_core p) (n - succ p)), from
|
|
|
|
hcongr_arg2 @to_nat (eq.symm (of_nat_eq H)) (of_nat_heq p n H),
|
|
|
|
have aux₂ : to_nat (lift (of_nat_core p) (n - succ p)) = p, from calc
|
|
|
|
to_nat (lift (of_nat_core p) (n - succ p)) = to_nat (of_nat_core p) : to_nat.lift
|
|
|
|
... = p : to_nat.of_nat_core,
|
|
|
|
heq.to_eq (heq.trans aux₁ (heq.from_eq aux₂))
|
|
|
|
|
|
|
|
end fin
|