lean2/library/data/finset/comb.lean

104 lines
4 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.finset
Author: Leonardo de Moura
Combinators for finite sets
-/
import data.finset.basic logic.identities
open list quot subtype decidable perm function
namespace finset
section map
variables {A B : Type}
variable [h : decidable_eq B]
include h
definition map (f : A → B) (s : finset A) : finset B :=
quot.lift_on s
(λ l, to_finset (list.map f (elt_of l)))
(λ l₁ l₂ p, quot.sound (perm_erase_dup_of_perm (perm_map _ p)))
theorem map_empty (f : A → B) : map f ∅ = ∅ :=
rfl
end map
section all
variables {A : Type}
definition all (s : finset A) (p : A → Prop) : Prop :=
quot.lift_on s
(λ l, all (elt_of l) p)
(λ l₁ l₂ p, foldr_eq_of_perm (λ a₁ a₂ q, propext !and.left_comm) p true)
theorem all_empty (p : A → Prop) : all ∅ p = true :=
rfl
theorem of_mem_of_all {p : A → Prop} {a : A} {s : finset A} : a ∈ s → all s p → p a :=
quot.induction_on s (λ l i h, list.of_mem_of_all i h)
theorem all_implies {p q : A → Prop} {s : finset A} : all s p → (∀ x, p x → q x) → all s q :=
quot.induction_on s (λ l h₁ h₂, list.all_implies h₁ h₂)
variable [h : decidable_eq A]
include h
theorem all_union {p : A → Prop} {s₁ s₂ : finset A} : all s₁ p → all s₂ p → all (s₁ s₂) p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a₁ a₂, all_union a₁ a₂)
theorem all_of_all_union_left {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ s₂) p → all s₁ p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_left a)
theorem all_of_all_union_right {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ s₂) p → all s₂ p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_right a)
theorem all_insert_of_all {p : A → Prop} {a : A} {s : finset A} : p a → all s p → all (insert a s) p :=
quot.induction_on s (λ l h₁ h₂, list.all_insert_of_all h₁ h₂)
theorem all_erase_of_all {p : A → Prop} (a : A) {s : finset A}: all s p → all (erase a s) p :=
quot.induction_on s (λ l h, list.all_erase_of_all a h)
theorem all_intersection_of_all_left {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₁ p → all (s₁ ∩ s₂) p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_intersection_of_all_left _ h)
theorem all_intersection_of_all_right {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₂ p → all (s₁ ∩ s₂) p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_intersection_of_all_right _ h)
end all
section cross_product
variables {A B : Type}
definition cross_product (s₁ : finset A) (s₂ : finset B) : finset (A × B) :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂,
to_finset_of_nodup (list.cross_product (elt_of l₁) (elt_of l₂))
(nodup_cross_product (has_property l₁) (has_property l₂)))
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_cross_product p₁ p₂))
infix * := cross_product
theorem empty_cross_product (s : finset B) : @empty A * s = ∅ :=
quot.induction_on s (λ l, rfl)
theorem mem_cross_product {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
: a ∈ s₁ → b ∈ s₂ → (a, b) ∈ s₁ * s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i₁ i₂, list.mem_cross_product i₁ i₂)
theorem mem_of_mem_cross_product_left {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
: (a, b) ∈ s₁ * s₂ → a ∈ s₁ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_cross_product_left i)
theorem mem_of_mem_cross_product_right {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
: (a, b) ∈ s₁ * s₂ → b ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_cross_product_right i)
theorem cross_product_empty (s : finset A) : s * @empty B = ∅ :=
ext (λ p,
match p with
| (a, b) := iff.intro
(λ i, absurd (mem_of_mem_cross_product_right i) !not_mem_empty)
(λ i, absurd i !not_mem_empty)
end)
end cross_product
end finset