33 lines
1.1 KiB
Text
33 lines
1.1 KiB
Text
|
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
-- Author: Jakob von Raumer
|
||
|
|
||
|
import ..precategory.basic ..precategory.morphism
|
||
|
import hott.equiv hott.trunc
|
||
|
|
||
|
open precategory morphism is_equiv path truncation nat sigma sigma.ops
|
||
|
|
||
|
-- A category is a precategory extended by a witness,
|
||
|
-- that the function assigning to each isomorphism a path,
|
||
|
-- is an equivalecnce.
|
||
|
structure category [class] (ob : Type) extends (precategory ob) :=
|
||
|
(iso_of_path_equiv : Π {a b : ob}, is_equiv (@iso_of_path ob (precategory.mk hom _ comp ID assoc id_left id_right) a b))
|
||
|
|
||
|
namespace category
|
||
|
variables {ob : Type} (C : category ob) {a b : ob}
|
||
|
include C
|
||
|
|
||
|
-- Make iso_of_path_equiv a class instance
|
||
|
-- TODO: Unsafe class instance?
|
||
|
instance [persistent] iso_of_path_equiv
|
||
|
|
||
|
definition path_of_iso {a b : ob} : (Σ (f : hom a b), is_iso f) → a ≈ b :=
|
||
|
iso_of_path⁻¹
|
||
|
|
||
|
definition ob_1_type : is_trunc 1 ob := sorry
|
||
|
|
||
|
end category
|
||
|
|
||
|
-- Bundled version of categories
|
||
|
inductive Category : Type := mk : Π (ob : Type), category ob → Category
|