2014-01-23 21:11:58 +00:00
|
|
|
|
Set: pp::colors
|
|
|
|
|
Set: pp::unicode
|
|
|
|
|
Assumed: a
|
|
|
|
|
Assumed: b
|
|
|
|
|
Assumed: c
|
|
|
|
|
a = 1 ∧ (¬ b = 0 ∨ c ≠ 0)
|
|
|
|
|
and_congr
|
|
|
|
|
(refl (a = 1))
|
2014-01-26 00:54:42 +00:00
|
|
|
|
(λ C::7 : a = 1,
|
2014-01-23 21:11:58 +00:00
|
|
|
|
trans (or_congr (or_congr (refl (¬ b = 0)) (λ C::2 : ¬ ¬ b = 0, congr2 (neq c) (not_not_elim C::2)))
|
2014-01-26 00:54:42 +00:00
|
|
|
|
(λ C::6 : ¬ (¬ b = 0 ∨ c ≠ 0),
|
2014-01-23 21:11:58 +00:00
|
|
|
|
congr (congr2 Nat::gt
|
2014-01-26 00:54:42 +00:00
|
|
|
|
(congr (congr2 Nat::add (not_not_elim (and_eliml (not_or_elim C::6))))
|
|
|
|
|
(not_neq_elim (and_elimr (not_or_elim C::6)))))
|
|
|
|
|
C::7))
|
2014-01-23 21:11:58 +00:00
|
|
|
|
(or_falsel (¬ b = 0 ∨ c ≠ 0)))
|
|
|
|
|
a = 1 ∧ ((¬ b = 0 ∨ c ≠ b) ∨ b + c > a) ↔ a = 1 ∧ (¬ b = 0 ∨ c ≠ 0)
|