2014-11-04 18:41:27 -08:00
|
|
|
inductive fibrant [class] (T : Type) : Type :=
|
|
|
|
fibrant_mk : fibrant T
|
|
|
|
|
|
|
|
inductive path {A : Type'} [fA : fibrant A] (a : A) : A → Type :=
|
|
|
|
idpath : path a a
|
|
|
|
|
|
|
|
notation a ≈ b := path a b
|
|
|
|
|
|
|
|
axiom path_fibrant {A : Type'} [fA : fibrant A] (a b : A) : fibrant (path a b)
|
2015-01-26 11:31:12 -08:00
|
|
|
attribute path_fibrant [instance]
|
2014-11-04 18:41:27 -08:00
|
|
|
|
|
|
|
axiom imp_fibrant {A : Type'} {B : Type'} [C1 : fibrant A] [C2 : fibrant B] : fibrant (A → B)
|
2015-01-24 20:23:21 -08:00
|
|
|
attribute imp_fibrant [instance]
|
2014-11-04 18:41:27 -08:00
|
|
|
|
|
|
|
definition test {A : Type} [fA : fibrant A] {x y : A} :
|
|
|
|
Π (z : A), y ≈ z → fibrant (x ≈ y → x ≈ z) := _
|