lean2/library/theories/analysis/real_deriv.lean

61 lines
2.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
Derivatives on
-/
import .bounded_linear_operator
open real nat classical topology analysis set
noncomputable theory
namespace real
-- move this to group
theorem add_sub_self (a b : ) : a + b - a = b :=
by rewrite [add_sub_assoc, add.comm, sub_add_cancel]
-- make instance of const mul bdd lin op?
definition derivative_at (f : ) (d x : ) := is_frechet_deriv_at f (λ t, d • t) x
theorem derivative_at_intro (f : ) (d x : ) (H : (λ h, (f (x + h) - f x) / h) ⟶ d [at 0]) :
derivative_at f d x :=
begin
apply is_frechet_deriv_at_intro,
intros ε Hε,
cases approaches_at_dest H Hε with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro y Hy,
rewrite [-sub_zero y at Hy{2}],
note Hδ' := and.right Hδ y (and.right Hy) (and.left Hy),
have Hδ'' : abs ((f (x + y) - f x - d * y) / y) < ε,
by rewrite [-div_sub_div_same, mul_div_cancel _ (and.left Hy)]; apply Hδ',
show abs (f (x + y) - f x - d * y) / abs y < ε, by rewrite -abs_div; apply Hδ''
end
theorem derivative_at_of_frechet_derivative_at {f g : } [is_bdd_linear_map g] {d x : }
(H : is_frechet_deriv_at f g x) (Hg : g = λ x, d * x) :
derivative_at f d x :=
by apply is_frechet_deriv_at_of_eq H Hg
theorem deriv_at_const (c x : ) : derivative_at (λ t, c) 0 x :=
derivative_at_of_frechet_derivative_at
(@frechet_deriv_at_const _ _ _ c)
(funext (λ v, by rewrite zero_mul))
theorem deriv_at_id (x : ) : derivative_at (λ t, t) 1 x :=
derivative_at_of_frechet_derivative_at
(@frechet_deriv_at_id _ _ _)
(funext (λ v, by rewrite one_mul))
theorem deriv_at_mul {f : } {d x : } (H : derivative_at f d x) (c : ) :
derivative_at (λ t, c * f t) (c * d) x :=
derivative_at_of_frechet_derivative_at
(frechet_deriv_at_smul _ _ c H)
(funext (λ v, by rewrite mul.assoc))
end real