lean2/src/util/mpz.h

135 lines
6.1 KiB
C
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include <iostream>
#include <gmp.h>
#include "num_macros.h"
#include "debug.h"
namespace lean {
class mpq;
// Wrapper for GMP integers
class mpz {
friend class mpq;
mpz_t m_val;
mpz(__mpz_struct const * v) { mpz_init_set(m_val, v); }
public:
mpz() { mpz_init(m_val); }
mpz(char const * v) { mpz_init_set_str(m_val, const_cast<char*>(v), 10); }
mpz(unsigned long int v) { mpz_init_set_ui(m_val, v); }
mpz(long int v) { mpz_init_set_si(m_val, v); }
mpz(unsigned int v) { mpz_init_set_ui(m_val, v); }
mpz(int v) { mpz_init_set_si(m_val, v); }
mpz(mpz const & s) { mpz_init_set(m_val, s.m_val); }
mpz(mpz && s):mpz() { mpz_swap(m_val, s.m_val); }
~mpz() { mpz_clear(m_val); }
int sgn() const { return mpz_sgn(m_val); }
friend int sgn(mpz const & a) { return a.sgn(); }
DEFINE_SIGN_METHODS()
void neg() { mpz_neg(m_val, m_val); }
void abs() { mpz_abs(m_val, m_val); }
friend mpz abs(mpz a) { a.abs(); return a; }
friend mpz neg(mpz a) { a.neg(); return a; }
bool even() const { return mpz_even_p(m_val) != 0; }
bool odd() const { return !even(); }
void swap(mpz & o) { mpz_swap(m_val, o.m_val); }
unsigned hash() const { return static_cast<unsigned>(mpz_get_si(m_val)); }
bool is_int() const { return mpz_fits_sint_p(m_val) != 0; }
bool is_unsigned_int() const { return mpz_fits_uint_p(m_val) != 0; }
bool is_long_int() const { return mpz_fits_slong_p(m_val) != 0; }
bool is_unsigned_long_int() const { return mpz_fits_ulong_p(m_val) != 0; }
long int get_long_int() const { lean_assert(is_long_int()); return mpz_get_si(m_val); }
int get_int() const { lean_assert(is_int()); return static_cast<int>(get_long_int()); }
unsigned long int get_unsigned_long_int() const { lean_assert(is_unsigned_long_int()); return mpz_get_ui(m_val); }
unsigned int get_unsigned_int() const { lean_assert(is_unsigned_int()); return static_cast<unsigned>(get_unsigned_long_int()); }
friend mpz abs(mpz const & a) { mpz r; mpz_abs(r.m_val, a.m_val); return r; }
friend int cmp(mpz const & a, mpz const & b) { return mpz_cmp(a.m_val, b.m_val); }
friend int cmp(mpz const & a, unsigned b) { return mpz_cmp_ui(a.m_val, b); }
friend int cmp(mpz const & a, int b) { return mpz_cmp_si(a.m_val, b); }
DEFINE_ORDER_OPS(mpz)
DEFINE_EQ_OPS(mpz)
mpz & operator+=(mpz const & o) { mpz_add(m_val, m_val, o.m_val); return *this; }
mpz & operator+=(unsigned u) { mpz_add_ui(m_val, m_val, u); return *this; }
mpz & operator+=(int u) { if (u >= 0) mpz_add_ui(m_val, m_val, u); else mpz_sub_ui(m_val, m_val, u); return *this; }
mpz & operator-=(mpz const & o) { mpz_sub(m_val, m_val, o.m_val); return *this; }
mpz & operator-=(unsigned u) { mpz_sub_ui(m_val, m_val, u); return *this; }
mpz & operator-=(int u) { if (u >= 0) mpz_sub_ui(m_val, m_val, u); else mpz_add_ui(m_val, m_val, u); return *this; }
mpz & operator*=(mpz const & o) { mpz_mul(m_val, m_val, o.m_val); return *this; }
mpz & operator*=(unsigned u) { mpz_mul_ui(m_val, m_val, u); return *this; }
mpz & operator*=(int u) { mpz_mul_si(m_val, m_val, u); return *this; }
mpz & operator/=(mpz const & o) { mpz_tdiv_q(m_val, m_val, o.m_val); return *this; }
mpz & operator/=(unsigned u) { mpz_tdiv_q_ui(m_val, m_val, u); return *this; }
friend mpz rem(mpz const & a, mpz const & b) { mpz r; mpz_tdiv_r(r.m_val, a.m_val, b.m_val); return r; }
mpz & operator%=(mpz const & o) { mpz r(*this % o); mpz_swap(m_val, r.m_val); return *this; }
DEFINE_ARITH_OPS(mpz)
friend mpz operator%(mpz const & a, mpz const & b);
mpz & operator&=(mpz const & o) { mpz_and(m_val, m_val, o.m_val); return *this; }
mpz & operator|=(mpz const & o) { mpz_ior(m_val, m_val, o.m_val); return *this; }
mpz & operator^=(mpz const & o) { mpz_xor(m_val, m_val, o.m_val); return *this; }
void comp() { mpz_com(m_val, m_val); }
// this <- this + a*b
void addmul(mpz const & a, mpz const & b) { mpz_addmul(m_val, a.m_val, b.m_val); }
// this <- this - a*b
void submul(mpz const & a, mpz const & b) { mpz_submul(m_val, a.m_val, b.m_val); }
// this <- this * 2^k
void mul2k(unsigned k) { mpz_mul_2exp(m_val, m_val, k); }
// this <- this / 2^k
void div2k(unsigned k) { mpz_tdiv_q_2exp(m_val, m_val, k); }
/**
\brief Return the position of the most significant bit.
Return 0 if the number is negative
*/
unsigned log2() const;
/**
\brief log2(-n)
Return 0 if the number is nonegative
*/
unsigned mlog2() const;
bool perfect_square() const { return mpz_perfect_square_p(m_val); }
bool is_power_of_two() const { return is_pos() && mpz_popcount(m_val) == 1; }
bool is_power_of_two(unsigned & shift) const;
friend mpz power(mpz const & a, unsigned k) { mpz r; mpz_pow_ui(r.m_val, a.m_val, k); return r; }
friend void rootrem(mpz & root, mpz & rem, mpz const & a, unsigned k) { mpz_rootrem(root.m_val, rem.m_val, a.m_val, k); }
friend void root(mpz & root, mpz const & a, unsigned k) { mpz_root(root.m_val, a.m_val, k); }
friend mpz root(mpz const & a, unsigned k) { mpz r; root(r, a, k); return r; }
friend mpz operator&(mpz a, mpz const & b) { return a &= b; }
friend mpz operator|(mpz a, mpz const & b) { return a |= b; }
friend mpz operator^(mpz a, mpz const & b) { return a ^= b; }
friend mpz operator~(mpz a) { a.comp(); return a; }
friend void gcd(mpz & g, mpz const & a, mpz const & b) { mpz_gcd(g.m_val, a.m_val, b.m_val); }
friend mpz gcd(mpz const & a, mpz const & b) { mpz r; gcd(r, a, b); return r; }
friend void gcdext(mpz & g, mpz & s, mpz & t, mpz const & a, mpz const & b) { mpz_gcdext(g.m_val, s.m_val, t.m_val, a.m_val, b.m_val); }
friend void lcm(mpz & l, mpz const & a, mpz const & b) { mpz_lcm(l.m_val, a.m_val, b.m_val); }
friend mpz lcm(mpz const & a, mpz const & b) { mpz l; lcm(l, a, b); return l; }
friend std::ostream & operator<<(std::ostream & out, mpz const & v);
};
}