2014-01-05 08:52:46 -08:00
|
|
|
-- Annotating lemmas
|
2013-09-06 10:06:26 -07:00
|
|
|
|
2014-01-08 00:38:39 -08:00
|
|
|
theorem simple (p q r : Bool) : (p → q) ∧ (q → r) → p → r :=
|
|
|
|
λ H_pq_qr H_p,
|
2014-01-09 08:33:52 -08:00
|
|
|
let P_pq : (p → q) := and_eliml H_pq_qr,
|
|
|
|
P_qr : (q → r) := and_elimr H_pq_qr,
|
2014-01-08 00:38:39 -08:00
|
|
|
P_q : q := P_pq H_p
|
|
|
|
in P_qr P_q
|
2013-09-06 10:06:26 -07:00
|
|
|
|
2014-01-05 12:05:08 -08:00
|
|
|
print environment 1
|