2014-08-24 19:58:48 -07:00
|
|
|
|
import logic
|
2014-09-03 16:00:38 -07:00
|
|
|
|
open tactic
|
2014-07-08 14:38:57 -07:00
|
|
|
|
|
2014-09-04 16:36:06 -07:00
|
|
|
|
definition my_tac1 := apply @eq.refl
|
|
|
|
|
definition my_tac2 := repeat (apply @and.intro; assumption)
|
2014-07-08 14:38:57 -07:00
|
|
|
|
|
|
|
|
|
tactic_hint my_tac1
|
|
|
|
|
tactic_hint my_tac2
|
|
|
|
|
|
|
|
|
|
theorem T1 {A : Type.{2}} (a : A) : a = a
|
|
|
|
|
|
2014-07-22 09:43:18 -07:00
|
|
|
|
theorem T2 {a b c : Prop} (Ha : a) (Hb : b) (Hc : c) : a ∧ b ∧ c
|
2014-07-08 14:38:57 -07:00
|
|
|
|
|
2014-09-04 16:36:06 -07:00
|
|
|
|
definition my_tac3 := fixpoint (λ f, [apply @or.intro_left; f |
|
|
|
|
|
apply @or.intro_right; f |
|
2014-07-08 14:38:57 -07:00
|
|
|
|
assumption])
|
|
|
|
|
|
2014-10-07 09:44:01 -07:00
|
|
|
|
tactic_hint my_tac3
|
2014-07-22 09:43:18 -07:00
|
|
|
|
theorem T3 {a b c : Prop} (Hb : b) : a ∨ b ∨ c
|