lean2/src/library/app_builder.cpp

233 lines
9 KiB
C++
Raw Normal View History

/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "util/scoped_map.h"
#include "util/name_map.h"
#include "kernel/instantiate.h"
#include "library/match.h"
#include "library/app_builder.h"
namespace lean {
struct app_builder::imp {
// For each declaration we associate the number of explicit arguments provided to
// it, and which of them are used to infer the implicit arguments.
struct decl_info {
unsigned m_nargs; // total number of explicit arguments
list<unsigned> m_used_idxs; // which ones are used to infer implicit arguments
decl_info(unsigned nargs, list<unsigned> const & used_idxs):
m_nargs(nargs), m_used_idxs(used_idxs) {}
decl_info() {}
};
struct cache_key {
name m_name;
list<expr> m_arg_types;
unsigned m_hash;
cache_key(name const & n, unsigned num_arg_types, expr const * arg_types):
m_name(n), m_arg_types(to_list(arg_types, arg_types + num_arg_types)) {
m_hash = m_name.hash();
for (unsigned i = 0; i < num_arg_types; i++)
m_hash = hash(m_hash, arg_types[i].hash());
}
};
struct cache_key_hash_fn {
unsigned operator()(cache_key const & e) const { return e.m_hash; }
};
struct cache_key_equal_fn {
bool operator()(cache_key const & e1, cache_key const & e2) const {
return
e1.m_name == e2.m_name &&
e1.m_arg_types == e2.m_arg_types;
}
};
// The cache stores a mapping (decl + type of explicit arguments ==> term t).
// If t is closed term, then we obtain the final application by using
// mk_app(t, explicit_args)
// If t contains free variables, then we obtain the final application by using
// instantiate(t, explicit_args)
typedef scoped_map<cache_key, expr, cache_key_hash_fn, cache_key_equal_fn> cache;
type_checker & m_tc;
match_plugin m_plugin;
name_map<decl_info> m_decl_info;
cache m_cache;
buffer<levels> m_levels;
imp(type_checker & tc):m_tc(tc), m_plugin(mk_whnf_match_plugin(tc)) {
m_levels.push_back(levels());
}
// Make sure m_levels contains at least nlvls metavariable universe levels
void ensure_levels(unsigned nlvls) {
while (m_levels.size() <= nlvls) {
level new_lvl = mk_idx_meta_univ(m_levels.size());
levels new_lvls = append(m_levels.back(), levels(new_lvl));
m_levels.push_back(new_lvls);
}
}
// We say the given mask is simple if it is of the form (false*, true*).
// That is, a block of false followed by a blocked of true
static bool is_simple_mask(buffer<bool> & explicit_mask) {
bool found_true = false;
for (bool const & b : explicit_mask) {
if (b)
found_true = true;
else if (found_true)
return false;
}
return true;
}
void save_decl_info(declaration const & d, unsigned nargs, buffer<unsigned> const & used_idxs) {
if (!m_decl_info.contains(d.get_name())) {
m_decl_info.insert(d.get_name(), decl_info(nargs, to_list(used_idxs)));
}
}
optional<expr> mk_app_core(declaration const & d, unsigned nargs, expr const * args) {
unsigned num_univs = d.get_num_univ_params();
ensure_levels(num_univs);
expr type = instantiate_type_univ_params(d, m_levels[num_univs]);
buffer<optional<level>> lsubst;
buffer<optional<expr>> esubst;
lsubst.resize(num_univs);
constraint_seq cs;
buffer<unsigned> used_idxs;
buffer<expr> used_types;
buffer<bool> explicit_mask;
unsigned idx = 0;
unsigned arity = 0;
bool has_unassigned_args = false;
bool has_unassigned_lvls = num_univs > 0;
while (is_pi(type)) {
if (idx >= nargs)
return none_expr();
if (is_explicit(binding_info(type))) {
explicit_mask.push_back(true);
if (!has_unassigned_args && !has_unassigned_lvls) {
esubst.push_back(some_expr(args[idx]));
} else {
expr arg_type = m_tc.infer(args[idx], cs);
if (cs)
return none_expr();
bool assigned = false;
if (!match(binding_domain(type), arg_type, esubst, lsubst,
nullptr, nullptr, &m_plugin, &assigned))
return none_expr();
if (assigned) {
used_idxs.push_back(idx);
used_types.push_back(arg_type);
has_unassigned_lvls = std::find(lsubst.begin(), lsubst.end(), none_level()) != lsubst.end();
has_unassigned_args = std::find(esubst.begin(), esubst.end(), none_expr()) != esubst.end();
}
esubst.push_back(some_expr(args[idx]));
}
idx++;
} else {
explicit_mask.push_back(false);
esubst.push_back(none_expr());
has_unassigned_args = true;
}
arity++;
type = binding_body(type);
}
lean_assert(explicit_mask.size() == esubst.size());
if (idx != nargs || has_unassigned_args || has_unassigned_lvls)
return none_expr();
save_decl_info(d, nargs, used_idxs);
buffer<level> r_lvls;
for (optional<level> const & l : lsubst)
r_lvls.push_back(*l);
buffer<expr> r_args;
for (optional<expr> const & o : esubst)
r_args.push_back(*o);
lean_assert(explicit_mask.size() == r_args.size());
cache_key k(d.get_name(), used_types.size(), used_types.data());
if (is_simple_mask(explicit_mask)) {
expr f = ::lean::mk_app(mk_constant(d.get_name(), to_list(r_lvls)), arity - nargs, r_args.data());
m_cache.insert(k, f);
return some_expr(::lean::mk_app(f, nargs, r_args.end() - nargs));
} else {
buffer<expr> imp_args;
buffer<expr> expl_args;
for (unsigned i = 0; i < explicit_mask.size(); i++) {
if (explicit_mask[i]) {
imp_args.push_back(mk_var(expl_args.size()));
expl_args.push_back(r_args[i]);
} else {
imp_args.push_back(r_args[i]);
}
}
expr f = ::lean::mk_app(mk_constant(d.get_name(), to_list(r_lvls)), imp_args.size(), imp_args.data());
m_cache.insert(k, f);
return some_expr(instantiate_rev(f, expl_args.size(), expl_args.data()));
}
}
optional<expr> mk_app(declaration const & d, unsigned nargs, expr const * args) {
if (auto info = m_decl_info.find(d.get_name())) {
if (info->m_nargs != nargs)
return none_expr();
buffer<expr> arg_types;
constraint_seq cs;
for (unsigned idx : info->m_used_idxs) {
lean_assert(idx < nargs);
expr t = m_tc.infer(args[idx], cs);
if (cs)
return none_expr(); // constraint was generated
arg_types.push_back(t);
}
cache_key k(d.get_name(), arg_types.size(), arg_types.data());
auto it = m_cache.find(k);
if (it != m_cache.end()) {
if (closed(it->second))
return some_expr(::lean::mk_app(it->second, nargs, args));
else
return some_expr(instantiate_rev(it->second, nargs, args));
} else {
return mk_app_core(d, nargs, args);
}
} else {
return mk_app_core(d, nargs, args);
}
}
void push() {
m_cache.push();
}
void pop() {
m_cache.pop();
}
};
app_builder::app_builder(type_checker & tc):m_ptr(new imp(tc)) {}
optional<expr> app_builder::mk_app(declaration const & d, unsigned nargs, expr const * args) {
return m_ptr->mk_app(d, nargs, args);
}
optional<expr> app_builder::mk_app(name const & n, unsigned nargs, expr const * args) {
declaration const & d = m_ptr->m_tc.env().get(n);
return mk_app(d, nargs, args);
}
optional<expr> app_builder::mk_app(name const & n, std::initializer_list<expr> const & args) {
return mk_app(n, args.size(), args.begin());
}
optional<expr> app_builder::mk_app(name const & n, expr const & a1) {
return mk_app(n, {a1});
}
optional<expr> app_builder::mk_app(name const & n, expr const & a1, expr const & a2) {
return mk_app(n, {a1, a2});
}
optional<expr> app_builder::mk_app(name const & n, expr const & a1, expr const & a2, expr const & a3) {
return mk_app(n, {a1, a2, a3});
}
void app_builder::push() { m_ptr->push(); }
void app_builder::pop() { m_ptr->pop(); }
}