lean2/hott/homotopy/sphere2.hlean

127 lines
4.9 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Calculating homotopy groups of spheres.
In this file we calculate
π₂(S²) = Z
πₙ(S²) = πₙ(S³) for n > 2
πₙ(Sⁿ) = Z for n > 0
π₂(S³) = Z
-/
import .homotopy_group .freudenthal
open eq group algebra is_equiv equiv fin prod chain_complex pointed fiber nat is_trunc trunc_index
sphere.ops trunc is_conn susp
namespace sphere
/- Corollaries of the complex hopf fibration combined with the LES of homotopy groups -/
open sphere sphere.ops int circle hopf
definition π2S2 : πg[1+1] (S. 2) ≃g g :=
begin
refine _ ⬝g fundamental_group_of_circle,
refine _ ⬝g homotopy_group_isomorphism_of_pequiv _ pfiber_complex_phopf,
fapply isomorphism_of_equiv,
{ fapply equiv.mk,
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (1, 2)},
{ refine @is_equiv_of_trivial _
_ _
(is_exact_LES_of_homotopy_groups _ (1, 1))
(is_exact_LES_of_homotopy_groups _ (1, 2))
_
_
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
_,
{ rewrite [LES_of_homotopy_groups_1, ▸*],
have H : 1 ≤[] 2, from !one_le_succ,
apply trivial_homotopy_group_of_is_conn, exact H, rexact is_conn_psphere 3},
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
(LES_of_homotopy_groups_1 complex_phopf 2) _,
apply trivial_homotopy_group_of_is_conn, apply le.refl, rexact is_conn_psphere 3},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}}},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}
end
open circle
definition πnS3_eq_πnS2 (n : ) : πg[n+2 +1] (S. 3) ≃g πg[n+2 +1] (S. 2) :=
begin
fapply isomorphism_of_equiv,
{ fapply equiv.mk,
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (n+3, 0)},
{ have H : is_trunc 1 (pfiber complex_phopf),
from @(is_trunc_equiv_closed_rev _ pfiber_complex_phopf) is_trunc_circle,
refine @is_equiv_of_trivial _
_ _
(is_exact_LES_of_homotopy_groups _ (n+2, 2))
(is_exact_LES_of_homotopy_groups _ (n+3, 0))
_
_
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
_,
{ rewrite [▸*, LES_of_homotopy_groups_2 _ (n +[] 2)],
have H : 1 ≤[] n + 1, from !one_le_succ,
apply trivial_homotopy_group_of_is_trunc _ _ _ H},
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
(LES_of_homotopy_groups_2 complex_phopf _) _,
have H : 1 ≤[] n + 2, from !one_le_succ,
apply trivial_homotopy_group_of_is_trunc _ _ _ H},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}}},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}
end
definition sphere_stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) :
π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_pequiv empty H end
definition stability_isomorphism (k n : ) (H : k + 3 ≤ 2 * n)
: πg[k+1 +1] (S. (n+1)) ≃g πg[k+1] (S. n) :=
begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_isomorphism empty H end
open int circle hopf
definition πnSn (n : ) : πg[n+1] (S. (succ n)) ≃g g :=
begin
cases n with n IH,
{ exact fundamental_group_of_circle},
{ induction n with n IH,
{ exact π2S2},
{ refine _ ⬝g IH, apply stability_isomorphism,
rexact add_mul_le_mul_add n 1 2}}
end
theorem not_is_trunc_sphere (n : ) : ¬is_trunc n (S. (succ n)) :=
begin
intro H,
note H2 := trivial_homotopy_group_of_is_trunc (S. (succ n)) n n !le.refl,
have H3 : is_contr , from is_trunc_equiv_closed _ (equiv_of_isomorphism (πnSn n)),
have H4 : (0 : ) ≠ (1 : ), from dec_star,
apply H4,
apply is_prop.elim,
end
section
open sphere_index
definition not_is_trunc_sphere' (n : ℕ₋₁) : ¬is_trunc n (S (n.+1)) :=
begin
cases n with n,
{ esimp [sphere.ops.S, sphere], intro H,
have H2 : is_prop bool, from @(is_trunc_equiv_closed -1 sphere_equiv_bool) H,
have H3 : bool.tt ≠ bool.ff, from dec_star, apply H3, apply is_prop.elim},
{ intro H, apply not_is_trunc_sphere (add_one n),
rewrite [▸*, trunc_index_of_nat_add_one, -add_one_succ,
sphere_index_of_nat_add_one],
exact H}
end
end
definition π3S2 : πg[2+1] (S. 2) ≃g g :=
(πnS3_eq_πnS2 0)⁻¹ᵍ ⬝g πnSn 2
end sphere