21 lines
432 B
Text
21 lines
432 B
Text
|
import tactic
|
||
|
using Nat
|
||
|
|
||
|
rewrite_set basic
|
||
|
add_rewrite add_zerol add_succl eq_id : basic
|
||
|
|
||
|
theorem add_assoc (a b c : Nat) : a + (b + c) = (a + b) + c
|
||
|
:= induction_on a
|
||
|
(have 0 + (b + c) = (0 + b) + c :
|
||
|
by simp basic)
|
||
|
(λ (n : Nat) (iH : n + (b + c) = (n + b) + c),
|
||
|
have (n + 1) + (b + c) = ((n + 1) + b) + c :
|
||
|
by simp basic)
|
||
|
|
||
|
exit
|
||
|
|
||
|
check add_zerol
|
||
|
check add_succl
|
||
|
check @eq_id
|
||
|
|
||
|
print environment 1
|