42 lines
1.3 KiB
Text
42 lines
1.3 KiB
Text
|
import macros
|
||
|
|
||
|
definition injective {A B : (Type U)} (f : A → B) := ∀ x1 x2, f x1 = f x2 → x1 = x2
|
||
|
definition non_surjective {A B : (Type U)} (f : A → B) := ∃ y, ∀ x, ¬ f x = y
|
||
|
|
||
|
-- The set of individuals
|
||
|
variable ind : Type
|
||
|
-- ind is infinite, i.e., there is a function f s.t. f is injective, and not surjective
|
||
|
axiom infinity : ∃ f : ind → ind, injective f ∧ non_surjective f
|
||
|
|
||
|
theorem nonempty_ind : nonempty ind
|
||
|
-- We use as the witness for non-emptiness, the value w in ind that is not convered by f.
|
||
|
:= obtain f His, from infinity,
|
||
|
obtain w Hw, from and_elimr His,
|
||
|
nonempty_intro w
|
||
|
|
||
|
definition S := ε (nonempty_ex_intro infinity) (λ f, injective f ∧ non_surjective f)
|
||
|
definition Z := ε nonempty_ind (λ y, ∀ x, ¬ S x = y)
|
||
|
|
||
|
theorem injective_S : injective S
|
||
|
:= and_eliml (exists_to_eps infinity)
|
||
|
|
||
|
theorem non_surjective_S : non_surjective S
|
||
|
:= and_elimr (exists_to_eps infinity)
|
||
|
|
||
|
theorem S_ne_Z (i : ind) : S i ≠ Z
|
||
|
:= obtain w Hw, from non_surjective_S,
|
||
|
eps_ax nonempty_ind w Hw i
|
||
|
|
||
|
definition N (i : ind) : Bool
|
||
|
:= ∀ P, P Z → (∀ x, P x → P (S x)) → P i
|
||
|
|
||
|
theorem N_Z : N Z
|
||
|
:= λ P Hz Hi, Hz
|
||
|
|
||
|
theorem N_S (i : ind) (H : N i) : N (S i)
|
||
|
:= λ P Hz Hi, Hi i (H P Hz Hi)
|
||
|
|
||
|
theorem N_smallest : ∀ P : ind → Bool, P Z → (∀ x, P x → P (S x)) → (∀ i, N i → P i)
|
||
|
:= λ P Hz Hi i Hni, Hni P Hz Hi
|
||
|
|