lean2/hott/algebra/category/constructions/rezk.hlean

258 lines
11 KiB
Text
Raw Normal View History

import algebra.category hit.two_quotient types.trunc
open eq category equiv trunc_two_quotient is_trunc iso relation e_closure function
namespace e_closure
definition elim_trans [unfold_full] {A B : Type} {f : A → B} {R : A → A → Type} {a a' a'' : A}
(po : Π⦃a a' : A⦄ (s : R a a'), f a = f a') (t : e_closure R a a') (t' : e_closure R a' a'')
: e_closure.elim po (t ⬝r t') = e_closure.elim po t ⬝ e_closure.elim po t' :=
by reflexivity
end e_closure open e_closure
namespace rezk_carrier
section
universes l k
parameters {A : Type.{l}} [C : precategory.{l k} A]
include C
inductive rezk_Q : Π ⦃a b : A⦄, e_closure iso a b → e_closure iso a b → Type :=
| comp_con : Π ⦃a b c : A⦄ (g : b ≅ c) (f : a ≅ b) , rezk_Q [f ⬝i g] ([f] ⬝r [g])
definition rezk_carrier := trunc_two_quotient 1 iso rezk_Q
local attribute rezk_carrier [reducible]
definition is_trunc_rezk_carrier [instance] : is_trunc 1 rezk_carrier := _
variables {a b c : A}
definition elt (a : A) : rezk_carrier := incl0 a
definition pth (f : a ≅ b) : elt a = elt b := incl1 f
definition resp_comp (g : b ≅ c) (f : a ≅ b) : pth (f ⬝i g) = pth f ⬝ pth g :=
incl2 (rezk_Q.comp_con g f)
definition resp_id (a : A) : pth (iso.refl a) = idp :=
begin
apply cancel_right (pth (iso.refl a)), refine _ ⬝ !idp_con⁻¹,
refine !resp_comp⁻¹ ⬝ _,
apply ap pth, apply iso_eq, esimp[iso.refl], apply id_left,
end
protected definition rec {P : rezk_carrier → Type} [Π x, is_trunc 1 (P x)]
(Pe : Π a, P (elt a)) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a =[pth f] Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b),
change_path (resp_comp g f) (Pp (f ⬝i g)) = Pp f ⬝o Pp g)
(x : rezk_carrier) : P x :=
begin
induction x,
{ apply Pe },
{ apply Pp },
{ induction q with a b c g f, apply Pcomp }
end
protected definition rec_on {P : rezk_carrier → Type} [Π x, is_trunc 1 (P x)]
(x : rezk_carrier)
(Pe : Π a, P (elt a)) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a =[pth f] Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b),
change_path (resp_comp g f) (Pp (f ⬝i g)) = Pp f ⬝o Pp g) : P x :=
rec Pe Pp Pcomp x
protected definition set_rec {P : rezk_carrier → Type} [Π x, is_set (P x)]
(Pe : Π a, P (elt a)) (Pp : Π⦃a b⦄ (f : a ≅ b), Pe a =[pth f] Pe b)
(x : rezk_carrier) : P x :=
rec Pe Pp !center x
protected definition prop_rec {P : rezk_carrier → Type} [Π x, is_prop (P x)]
(Pe : Π a, P (elt a)) (x : rezk_carrier) : P x :=
rec Pe !center !center x
protected definition elim {P : Type} [is_trunc 1 P] (Pe : A → P)
(Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a = Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b), Pp (f ⬝i g) = Pp f ⬝ Pp g)
(x : rezk_carrier) : P :=
begin
induction x,
{ exact Pe a },
{ exact Pp s },
{ induction q with a b c g f, exact Pcomp g f }
end
protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : rezk_carrier)
(Pe : A → P) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a = Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b), Pp (f ⬝i g) = Pp f ⬝ Pp g) : P :=
elim Pe Pp Pcomp x
protected definition set_elim [reducible] {P : Type} [is_set P] (Pe : A → P)
(Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a = Pe b) (x : rezk_carrier) : P :=
elim Pe Pp !center x
protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pe : A → P)
(x : rezk_carrier) : P :=
elim Pe !center !center x
definition elim_pth {P : Type} [is_trunc 1 P] {Pe : A → P} {Pp : Π⦃a b⦄ (f : a ≅ b), Pe a = Pe b}
(Pcomp : Π⦃a b c⦄ (g : b ≅ c) (f : a ≅ b), Pp (f ⬝i g) = Pp f ⬝ Pp g) {a b : A} (f : a ≅ b) :
ap (elim Pe Pp Pcomp) (pth f) = Pp f :=
!elim_incl1
--TODO generalize this to arbitrary truncated two-quotients or not?
protected definition elim_set.{m} [reducible] (Pe : A → Set.{m}) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a ≃ Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b) (x : Pe a), Pp (f ⬝i g) x = Pp g (Pp f x))
(x : rezk_carrier) : Set.{m} :=
elim Pe (λa b f, tua (Pp f)) (λa b c g f, ap tua (equiv_eq (Pcomp g f)) ⬝ !tua_trans) x
protected definition elim_set_pt.{m} [reducible] (Pe : A → Set.{m}) (Pp : Π ⦃a b⦄ (f : a ≅ b), Pe a ≃ Pe b)
(Pcomp : Π ⦃a b c⦄ (g : b ≅ c) (f : a ≅ b) (x : Pe a), Pp (f ⬝i g) x = Pp g (Pp f x))
(a : A) : trunctype.carrier (rezk_carrier.elim_set Pe Pp Pcomp (elt a)) = Pe a :=
idp
protected theorem elim_set_pth {Pe : A → Set} {Pp : Π⦃a b⦄ (f : a ≅ b), Pe a ≃ Pe b}
(Pcomp : Π⦃a b c⦄ (g : b ≅ c) (f : a ≅ b) (x : Pe a), Pp (f ⬝i g) x = Pp g (Pp f x))
{a b : A} (f : a ≅ b) :
transport (elim_set Pe Pp Pcomp) (pth f) = Pp f :=
begin
rewrite [tr_eq_cast_ap_fn, ↑elim_set, ▸*],
rewrite [ap_compose' trunctype.carrier, elim_pth], apply tcast_tua_fn
end
end
end rezk_carrier open rezk_carrier
attribute rezk_carrier.elt [constructor]
attribute rezk_carrier.rec rezk_carrier.elim [unfold 8] [recursor 8]
attribute rezk_carrier.rec_on rezk_carrier.elim_on [unfold 5]
attribute rezk_carrier.set_rec rezk_carrier.set_elim [unfold 7]
attribute rezk_carrier.prop_rec rezk_carrier.prop_elim
rezk_carrier.elim_set [unfold 6]
open trunctype
namespace rezk_completion
section
universes l k
parameters (A : Type.{l}) (C : precategory.{l k} A)
definition rezk_hom_left_pt [constructor] (a : A) (b : @rezk_carrier A C) : Set.{k} :=
begin
refine rezk_carrier.elim_set _ _ _ b,
{ clear b, intro b, exact trunctype.mk' 0 (hom a b) },
{ clear b, intro b b' f, apply equiv_postcompose (iso.to_hom f) },
{ clear b, intro b b' b'' f g x, apply !assoc⁻¹ }
end
private definition transport_rezk_hom_left_pt_eq_comp {a b c : A} (f : hom a b) (g : b ≅ c) :
pathover (rezk_hom_left_pt a) f (pth g) ((to_hom g) ∘ f) :=
begin
apply pathover_of_tr_eq, apply @homotopy_of_eq _ _ _ (λ f, (to_hom g) ∘ f),
apply rezk_carrier.elim_set_pth,
end
definition rezk_hom_left_pth_1_trunc [instance] (a a' : A) (f : a ≅ a') :
Π b, is_trunc 1 (carrier (rezk_hom_left_pt a b) ≃ carrier (rezk_hom_left_pt a' b)) :=
λ b, is_trunc_equiv _ _ _
definition rezk_hom_left_pth (a a' : A) (f : a ≅ a') (b : rezk_carrier) :
carrier (rezk_hom_left_pt a b) ≃ carrier (rezk_hom_left_pt a' b) :=
begin
--induction b using rezk_carrier.rec with b' b' b g, --why does this not work if it works below?
refine @rezk_carrier.rec _ _ _ (rezk_hom_left_pth_1_trunc a a' f) _ _ _ b,
intro b, apply equiv_precompose (to_hom f⁻¹ⁱ), --how do i unfold properly at this point?
{ intro b b' g, apply equiv_pathover, intro g' g'' H,
refine !transport_rezk_hom_left_pt_eq_comp ⬝op _,
refine !assoc ⬝ ap (λ x, x ∘ _) _, refine eq_of_parallel_po_right _ H,
apply transport_rezk_hom_left_pt_eq_comp },
intro b b' b'' g g', apply @is_prop.elim, apply is_trunc_pathover, apply is_trunc_equiv
end
definition rezk_hom [unfold 3 4] (a b : @rezk_carrier A C) : Set.{k} :=
begin
refine rezk_carrier.elim_set _ _ _ a,
{ clear a, intro a, exact rezk_hom_left_pt a b },
{ clear a, intro a a' f, apply rezk_hom_left_pth a a' f },
{ clear a, intro a a' a'' Ef Eg Rfg, induction b using rezk_carrier.rec,
apply assoc, apply is_prop.elimo, apply is_set.elimo }
end
private definition transport_rezk_hom_left_eq_comp {a b c : A} (f : hom a c) (g : a ≅ b) :
pathover (λ x, rezk_hom x (elt c)) f (pth g) (f ∘ (to_hom g)⁻¹) :=
begin
apply pathover_of_tr_eq, apply @homotopy_of_eq _ _ _ (λ f, f ∘ (to_hom g)⁻¹),
apply rezk_carrier.elim_set_pth,
end
private definition transport_rezk_hom_eq_comp {a c : A} (f : hom a a) (g : a ≅ c) :
transport (λ x, rezk_hom x x) (pth g) f = (to_hom g) ∘ f ∘ (to_hom g)⁻¹ :=
begin
apply concat, apply tr_diag_eq_tr_tr rezk_hom,
apply concat, apply ap (λ x, _ ▸ x),
apply tr_eq_of_pathover, apply transport_rezk_hom_left_eq_comp,
apply tr_eq_of_pathover, apply transport_rezk_hom_left_pt_eq_comp
end
definition rezk_id (a : @rezk_carrier A C) : rezk_hom a a :=
begin
induction a using rezk_carrier.rec,
apply id,
{ apply pathover_of_tr_eq, refine !transport_rezk_hom_eq_comp ⬝ _,
refine (ap (λ x, to_hom f ∘ x) !id_left) ⬝ _, apply right_inverse },
apply is_set.elimo
end
definition pathover_of_homotopy {A : Type} {a b : A} {P Q : A → Type} {f : P a → Q a} {g : P b → Q b} (p : a = b)
(H : Π x, f x =[p] g (p ▸ x)) : pathover (λ x, P x → Q x) f p g :=
begin
induction p, esimp at *, apply pathover_idp_of_eq, apply eq_of_homotopy,
intro x, apply @eq_of_pathover_idp A, apply H x,
end
definition rezk_comp_pt_pt [reducible] {c : rezk_carrier} {a b : A}
(g : carrier (rezk_hom (elt b) c))
(f : carrier (rezk_hom (elt a) (elt b))) : carrier (rezk_hom (elt a) c) :=
begin
induction c using rezk_carrier.set_rec with c c c' ic,
exact g ∘ f,
{ apply pathover_of_homotopy, intro d,
apply concato !transport_rezk_hom_left_pt_eq_comp, apply pathover_idp_of_eq,
apply concat, apply assoc, apply ap (λ x, x ∘ f),
apply inverse, apply tr_eq_of_pathover, apply transport_rezk_hom_left_pt_eq_comp },
end
definition rezk_comp_pt_pth [reducible] {c : rezk_carrier} {a b b' : A} {ib : iso b b'} :
pathover (λ b, carrier (rezk_hom b c) → carrier (rezk_hom (elt a) b) → carrier (rezk_hom (elt a) c))
(λ g f, rezk_comp_pt_pt g f) (pth ib) (λ g f, rezk_comp_pt_pt g f) :=
begin
apply pathover_of_homotopy, intro x,
apply pathover_of_homotopy, intro y,
induction c using rezk_carrier.set_rec with c c c' ic,
{ apply pathover_of_eq, apply inverse,
apply concat, apply ap (λ x, rezk_comp_pt_pt x _), apply tr_eq_of_pathover,
apply transport_rezk_hom_left_eq_comp,
apply concat, apply ap (rezk_comp_pt_pt _), apply tr_eq_of_pathover,
apply transport_rezk_hom_left_pt_eq_comp,
refine !assoc ⬝ ap (λ x, x ∘ y) _,
refine !assoc⁻¹ ⬝ _,
refine ap (λ y, x ∘ y) !iso.left_inverse ⬝ _,
apply id_right },
apply @is_prop.elimo
end
definition rezk_comp {a b c : @rezk_carrier A C} (g : rezk_hom b c) (f : rezk_hom a b) :
rezk_hom a c :=
begin
induction a using rezk_carrier.set_rec with a a a' ia,
{ induction b using rezk_carrier.set_rec with b b b' ib,
apply rezk_comp_pt_pt g f, apply rezk_comp_pt_pth },
{ induction b using rezk_carrier.set_rec with b b b' ib,
apply pathover_of_homotopy, intro f,
induction c using rezk_carrier.set_rec with c c c' ic,
{ apply concato, apply transport_rezk_hom_left_eq_comp,
apply pathover_idp_of_eq, refine !assoc⁻¹ ⬝ ap (λ x, g ∘ x) _⁻¹,
apply tr_eq_of_pathover, apply transport_rezk_hom_left_eq_comp },
apply is_prop.elimo,
apply is_prop.elimo }
end
end
end rezk_completion