2014-01-01 22:01:12 +00:00
|
|
|
Import macros.
|
|
|
|
|
|
|
|
Theorem simple (p q r : Bool) : (p ⇒ q) ∧ (q ⇒ r) ⇒ p ⇒ r
|
2014-01-04 02:11:01 +00:00
|
|
|
:= Assume H_pq_qr H_p,
|
2013-09-04 12:39:35 +00:00
|
|
|
let P_pq := Conjunct1 H_pq_qr,
|
|
|
|
P_qr := Conjunct2 H_pq_qr,
|
|
|
|
P_q := MP P_pq H_p
|
2014-01-01 22:01:12 +00:00
|
|
|
in MP P_qr P_q.
|
2013-09-04 01:00:30 +00:00
|
|
|
|
2014-01-01 22:01:12 +00:00
|
|
|
SetOption pp::implicit true.
|
2014-01-05 19:03:35 +00:00
|
|
|
print Environment 1.
|
2013-09-04 01:00:30 +00:00
|
|
|
|
2014-01-01 22:01:12 +00:00
|
|
|
Theorem simple2 (a b c : Bool) : (a ⇒ b ⇒ c) ⇒ (a ⇒ b) ⇒ a ⇒ c
|
2014-01-04 02:11:01 +00:00
|
|
|
:= Assume H_abc H_ab H_a,
|
2013-09-04 12:39:35 +00:00
|
|
|
let P_b := (MP H_ab H_a),
|
|
|
|
P_bc := (MP H_abc H_a)
|
2014-01-01 22:01:12 +00:00
|
|
|
in MP P_bc P_b.
|
2013-09-04 12:39:35 +00:00
|
|
|
|
2014-01-05 19:03:35 +00:00
|
|
|
print Environment 1.
|