lean2/src/frontends/lean/parser_calc.h

83 lines
2.4 KiB
C
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include "util/list.h"
#include "util/optional.h"
#include "kernel/expr.h"
#include "frontends/lean/parser_types.h"
namespace lean {
class parser_imp;
class operator_info;
/**
\brief Information for a operator available in the
calculational proof module. It must have at least two arguments.
It may have implicit ones. We assume the implicit arguments
occur in the beginning.
*/
struct op_data {
expr m_fn;
unsigned m_num_args;
op_data(expr const & f, unsigned n): m_fn(f), m_num_args(n) {}
};
/**
\brief Information about a transitivity-like proof step.
The m_fn function must have at least 5 arguments.
We assume the implicit ones occur in the beginning.
The last five are a, b, c and a proof for 'a op1 b' and 'b op2 c'.
The function m_fn produces a proof for 'a rop b'.
The resultant operator must be in the list of supported operators.
*/
struct trans_data {
expr m_fn;
unsigned m_num_args; // number of arguments of m_fn .
expr m_rop; // resultant operator
trans_data(expr const & f, unsigned n, expr const & rop):
m_fn (f), m_num_args(n), m_rop(rop) {
}
};
/**
\brief Calculational proof support in the Lean parser.
It parses expression of the form:
calc expr op expr : proof1
... op expr : proof2
... op expr : proofn
*/
class calc_proof_parser {
/**
\brief List of supported operators in calculational proofs.
*/
list<op_data> m_supported_operators;
/**
\brief Maps to operators to the corresponding transitivity operator.
For example, the pair (=, =>) maps to
Theorem EqImpTrans {a b c : Bool} (H1 : a == b) (H2 : b c) : a c
:= assume Ha, MP H2 (EqMP H1 Ha).
*/
list<std::tuple<expr, expr, trans_data>> m_trans_ops;
optional<trans_data> find_trans_data(expr const & op1, expr const & op2) const;
optional<expr> find_op(operator_info const & op, pos_info const & p) const;
expr parse_op(parser_imp & imp) const;
public:
calc_proof_parser();
bool supports(expr const & op1) const;
void add_supported_operator(op_data const & op);
void add_trans_step(expr const & op1, expr const & op2, trans_data const & d);
expr parse(parser_imp & p) const;
};
}