lean2/library/data/real/complete.lean

463 lines
14 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
At this point, we no longer proceed constructively: this file makes heavy use of decidability,
excluded middle, and Hilbert choice.
Here, we show that is complete.
-/
import data.real.basic data.real.order data.real.division data.rat data.nat logic.axioms.classical
open -[coercions] rat
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1
open -[coercions] nat
open algebra
open eq.ops
local notation 2 := pnat.pos (nat.of_num 2) dec_trivial
local notation 3 := pnat.pos (nat.of_num 3) dec_trivial
namespace s
theorem nonneg_of_ge_neg_invs (a : ) (H : ∀ n : +, -n⁻¹ ≤ a) : 0 ≤ a := sorry
definition const (a : ) : seq := λ n, a
theorem const_reg (a : ) : regular (const a) :=
begin
intros,
rewrite [↑const, sub_self, abs_zero],
apply add_invs_nonneg
end
definition r_const (a : ) : reg_seq := reg_seq.mk (const a) (const_reg a)
theorem rat_approx_l1 {s : seq} (H : regular s) :
∀ n : +, ∃ q : , ∃ N : +, ∀ m : +, m ≥ N → abs (s m - q) ≤ n⁻¹ :=
begin
intro n,
existsi (s (2 * n)),
existsi 2 * n,
intro m Hm,
apply rat.le.trans,
apply H,
rewrite -(padd_halves n),
apply rat.add_le_add_right,
apply inv_ge_of_le Hm
end
theorem rat_approx {s : seq} (H : regular s) :
∀ n : +, ∃ q : , s_le (s_abs (sadd s (sneg (const q)))) (const n⁻¹) :=
begin
intro m,
rewrite ↑s_le,
apply exists.elim (rat_approx_l1 H m),
intro q Hq,
apply exists.elim Hq,
intro N HN,
existsi q,
apply nonneg_of_bdd_within,
repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg
| assumption),
intro n,
existsi N,
intro p Hp,
rewrite ↑[sadd, sneg, s_abs, const],
apply rat.le.trans,
rotate 1,
apply rat.sub_le_sub_left,
apply HN,
apply ple.trans,
apply Hp,
rewrite -*pnat_mul_assoc,
apply pnat.mul_le_mul_left,
rewrite [sub_self, -neg_zero],
apply neg_le_neg,
apply rat.le_of_lt,
apply inv_pos
end
definition r_abs (s : reg_seq) : reg_seq :=
reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s))
theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_abs s ≡ s_abs t :=
begin
rewrite [↑equiv at *],
intro n,
rewrite ↑s_abs,
apply rat.le.trans,
apply abs_abs_sub_abs_le_abs_sub,
apply Heq
end
theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) :=
abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
theorem r_rat_approx (s : reg_seq) :
∀ n : +, ∃ q : , r_le (r_abs (radd s (rneg (r_const q)))) (r_const n⁻¹) :=
rat_approx (reg_seq.is_reg s)
theorem const_bound {s : seq} (Hs : regular s) (n : +) : s_le (s_abs (sadd s (sneg (const (s n))))) (const n⁻¹) :=
begin
rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const],
intro m,
apply iff.mp !rat.le_add_iff_neg_le_sub_left,
apply rat.le.trans,
apply Hs,
apply rat.add_le_add_right,
rewrite -*pnat_mul_assoc,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem abs_const (a : ) : const (abs a) ≡ s_abs (const a) :=
begin
rewrite [↑s_abs, ↑const],
apply equiv.refl
end
theorem r_abs_const (a : ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a
theorem add_consts (a b : ) : sadd (const a) (const b) ≡ const (a + b) :=
begin
rewrite [↑sadd, ↑const],
apply equiv.refl
end
theorem r_add_consts (a b : ) : requiv (r_const a + r_const b) (r_const (a + b)) := add_consts a b
theorem const_le_const_of_le {a b : } (H : a ≤ b) : s_le (const a) (const b) :=
begin
rewrite [↑s_le, ↑nonneg],
intro n,
rewrite [↑sadd, ↑sneg, ↑const],
apply rat.le.trans,
apply rat.neg_nonpos_of_nonneg,
apply rat.le_of_lt,
apply inv_pos,
apply iff.mp' !rat.sub_nonneg_iff_le,
apply H
end
theorem le_of_const_le_const {a b : } (H : s_le (const a) (const b)) : a ≤ b :=
begin
rewrite [↑s_le at H, ↑nonneg at H, ↑sadd at H, ↑sneg at H, ↑const at H],
apply iff.mp !rat.sub_nonneg_iff_le,
apply nonneg_of_ge_neg_invs _ H
end
theorem r_const_le_const_of_le {a b : } (H : a ≤ b) : r_le (r_const a) (r_const b) :=
const_le_const_of_le H
theorem r_le_of_const_le_const {a b : } (H : r_le (r_const a) (r_const b)) : a ≤ b :=
le_of_const_le_const H
theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_abs s ≡ s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply Hs,
intro j,
rewrite ↑s_abs,
let Hz' := s_nonneg_of_ge_zero Hs Hz,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero],
apply rat.le_of_lt,
apply inv_pos,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn],
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply rat.neg_le_neg; apply Hz'),
rewrite *rat.neg_neg,
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite padd_halves,
apply rat.le.refl
end
theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) : s_abs s ≡ sneg s :=
begin
apply eq_of_bdd,
apply abs_reg_of_reg Hs,
apply reg_neg_reg Hs,
intro j,
rewrite [↑s_abs, ↑s_le at Hz],
have Hz' : nonneg (sneg s), begin
apply nonneg_of_nonneg_equiv,
rotate 3,
apply Hz,
rotate 2,
apply s_zero_add,
repeat (apply Hs | apply zero_is_reg | apply reg_neg_reg | apply reg_add_reg)
end,
existsi 2 * j,
intro n Hn,
apply or.elim (decidable.em (s n ≥ 0)),
intro Hpos,
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn],
rewrite [↑nonneg at Hz', ↑sneg at Hz'],
apply rat.le.trans,
apply rat.add_le_add,
repeat apply (rat.le_of_neg_le_neg !Hz'),
apply rat.le.trans,
apply rat.add_le_add,
repeat (apply inv_ge_of_le; apply Hn),
rewrite padd_halves,
apply rat.le.refl,
intro Hneg,
let Hneg' := lt_of_not_ge Hneg,
rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self,
abs_zero],
apply rat.le_of_lt,
apply inv_pos
end
theorem r_equiv_abs_of_ge_zero {s : reg_seq} (Hz : r_le r_zero s) : requiv (r_abs s) s :=
equiv_abs_of_ge_zero (reg_seq.is_reg s) Hz
theorem r_equiv_neg_abs_of_le_zero {s : reg_seq} (Hz : r_le s r_zero) : requiv (r_abs s) (-s) :=
equiv_neg_abs_of_le_zero (reg_seq.is_reg s) Hz
end s
namespace real
theorem rewrite_helper9 (a b c : ) : b - c = (b - a) - (c - a) := sorry
theorem rewrite_helper10 (a b c d : ) : c - d = (c - a) + (a - b) + (b - d) := sorry
definition rep (x : ) : reg_seq := some (quot.exists_rep x)
definition const (a : ) : := quot.mk (s.r_const a)
theorem add_consts (a b : ) : const a + const b = const (a + b) :=
quot.sound (s.r_add_consts a b)
theorem sub_consts (a b : ) : const a - const b = const (a - b) := !add_consts
theorem add_half_const (n : +) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) :=
by rewrite [add_consts, padd_halves]
theorem const_le_const_of_le (a b : ) : a ≤ b → const a ≤ const b :=
s.r_const_le_const_of_le
theorem le_of_const_le_const (a b : ) : const a ≤ const b → a ≤ b :=
s.r_le_of_const_le_const
definition re_abs (x : ) : :=
quot.lift_on x (λ a, quot.mk (s.r_abs a)) (take a b Hab, quot.sound (s.r_abs_well_defined Hab))
theorem r_abs_nonneg {x : } : 0 ≤ x → re_abs x = x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_abs_of_ge_zero Ha))
theorem r_abs_nonpos {x : } : x ≤ 0 → re_abs x = -x :=
quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha))
theorem abs_const' (a : ) : const (rat.abs a) = re_abs (const a) := quot.sound (s.r_abs_const a)
theorem re_abs_is_abs : re_abs = algebra.abs := funext
(begin
intro x,
rewrite ↑abs,
apply eq.symm,
let Hor := decidable.em (0 ≤ x),
apply or.elim Hor,
intro Hor1,
rewrite [(if_pos Hor1), r_abs_nonneg Hor1],
intro Hor2,
let Hor2' := algebra.le_of_lt (algebra.lt_of_not_ge Hor2),
rewrite [(if_neg Hor2), r_abs_nonpos Hor2']
end)
theorem abs_const (a : ) : const (rat.abs a) = abs (const a) :=
by rewrite -re_abs_is_abs -- ????
theorem rat_approx' (x : ) : ∀ n : +, ∃ q : , re_abs (x - const q) ≤ const n⁻¹ :=
quot.induction_on x (λ s n, s.r_rat_approx s n)
theorem rat_approx (x : ) : ∀ n : +, ∃ q : , abs (x - const q) ≤ const n⁻¹ :=
by rewrite -re_abs_is_abs; apply rat_approx'
definition approx (x : ) (n : +) := some (rat_approx x n)
theorem approx_spec (x : ) (n : +) : abs (x - (const (approx x n))) ≤ const n⁻¹ :=
some_spec (rat_approx x n)
theorem approx_spec' (x : ) (n : +) : abs ((const (approx x n)) - x) ≤ const n⁻¹ :=
by rewrite algebra.abs_sub; apply approx_spec
notation `r_seq` := + →
definition converges_to (X : r_seq) (a : ) (N : + → +) :=
∀ k : +, ∀ n : +, n ≥ N k → abs (X n - a) ≤ const k⁻¹
definition cauchy (X : r_seq) (M : + → +) :=
∀ k : +, ∀ m n : +, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ const k⁻¹
theorem cauchy_of_converges_to {X : r_seq} {a : } {N : + → +} (Hc : converges_to X a N) :
cauchy X (λ k, N (2 * k)) :=
begin
intro k m n Hm Hn,
rewrite (rewrite_helper9 a),
apply algebra.le.trans,
apply algebra.abs_add_le_abs_add_abs,
apply algebra.le.trans,
apply algebra.add_le_add,
apply Hc,
apply Hm,
rewrite algebra.abs_neg,
apply Hc,
apply Hn,
rewrite add_half_const,
apply !algebra.le.refl
end
definition Nb (M : + → +) := λ k, max (3 * k) (M (2 * k))
theorem Nb_spec_right (M : + → +) (k : +) : M (2 * k) ≤ Nb M k := !max_right
theorem Nb_spec_left (M : + → +) (k : +) : 3 * k ≤ Nb M k := !max_left
definition lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : seq :=
λ k, approx (X (Nb M k)) (2 * k)
theorem lim_seq_reg_helper {X : r_seq} {M : + → +} (Hc : cauchy X M) {m n : +}
(Hmn : M (2 * n) ≤M (2 * m)) :
abs (const (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
(X (Nb M n) - const (lim_seq Hc n)) ≤ const (m⁻¹ + n⁻¹) :=
begin
apply algebra.le.trans,
apply algebra.add_le_add_three,
apply approx_spec',
rotate 1,
apply approx_spec,
rotate 1,
apply Hc,
rotate 1,
apply Nb_spec_right,
rotate 1,
apply ple.trans,
apply Hmn,
apply Nb_spec_right,
rewrite [*add_consts, rat.add.assoc, padd_halves],
apply const_le_const_of_le,
apply rat.add_le_add_right,
apply inv_ge_of_le,
apply pnat.mul_le_mul_left
end
theorem lim_seq_reg {X : r_seq} {M : + → +} (Hc : cauchy X M) : regular (lim_seq Hc) :=
begin
rewrite ↑regular,
intro m n,
apply le_of_const_le_const,
rewrite [abs_const, -sub_consts, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
apply algebra.le.trans,
apply algebra.abs_add_three,
let Hor := decidable.em (M (2 * m) ≥ M (2 * n)),
apply or.elim Hor,
intro Hor1,
apply lim_seq_reg_helper Hc Hor1,
intro Hor2,
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
rewrite [algebra.abs_sub (X (Nb M n)), algebra.abs_sub (X (Nb M m)), algebra.abs_sub, -- ???
rat.add.comm, algebra.add_comm_three],
apply lim_seq_reg_helper Hc Hor2'
end
theorem lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.s_le (s.s_abs (sadd (lim_seq Hc) (sneg (s.const (lim_seq Hc k))) )) (s.const k⁻¹) :=
begin
apply s.const_bound,
apply lim_seq_reg
end
definition r_lim_seq {X : r_seq} {M : + → +} (Hc : cauchy X M) : reg_seq :=
reg_seq.mk (lim_seq Hc) (lim_seq_reg Hc)
theorem r_lim_seq_spec {X : r_seq} {M : + → +} (Hc : cauchy X M) (k : +) :
s.r_le (s.r_abs (((r_lim_seq Hc) + -s.r_const ((reg_seq.sq (r_lim_seq Hc)) k)))) (s.r_const (k)⁻¹) :=
lim_seq_spec Hc k
definition lim {X : r_seq} {M : + → +} (Hc : cauchy X M) : :=
quot.mk (r_lim_seq Hc)
theorem re_lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
re_abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ :=
r_lim_seq_spec Hc k
theorem lim_spec' {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ :=
by rewrite -re_abs_is_abs; apply re_lim_spec
theorem lim_spec {x : r_seq} {M : + → +} (Hc : cauchy x M) (k : +) :
abs ((const ((lim_seq Hc) k)) - (lim Hc)) ≤ const (k)⁻¹ :=
by rewrite algebra.abs_sub; apply lim_spec'
theorem converges_of_cauchy {X : r_seq} {M : + → +} (Hc : cauchy X M) :
converges_to X (lim Hc) (Nb M) :=
begin
intro k n Hn,
rewrite (rewrite_helper10 (X (Nb M n)) (const (lim_seq Hc n))),
apply algebra.le.trans,
apply algebra.abs_add_three,
apply algebra.le.trans,
apply algebra.add_le_add_three,
apply Hc,
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_right,
have HMk : M (2 * k) ≤ Nb M n, begin
apply ple.trans,
apply Nb_spec_right,
apply ple.trans,
apply Hn,
apply ple.trans,
apply pnat.mul_le_mul_left 3,
apply Nb_spec_left
end,
apply HMk,
rewrite ↑lim_seq,
apply approx_spec,
apply lim_spec,
rewrite 2 add_consts,
apply const_le_const_of_le,
apply rat.le.trans,
apply add_le_add_three,
apply rat.le.refl,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
apply inv_ge_of_le,
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply Nb_spec_left,
rewrite [-*pnat_mul_assoc, p_add_fractions],
apply rat.le.refl
end
end real