2013-09-04 01:00:30 +00:00
|
|
|
Theorem simple (p q r : Bool) : (p ⇒ q) ∧ (q ⇒ r) ⇒ p ⇒ r :=
|
2013-09-04 12:39:35 +00:00
|
|
|
Discharge (λ H_pq_qr, Discharge (λ H_p,
|
|
|
|
let P_pq := Conjunct1 H_pq_qr,
|
|
|
|
P_qr := Conjunct2 H_pq_qr,
|
|
|
|
P_q := MP P_pq H_p
|
|
|
|
in MP P_qr P_q))
|
2013-09-04 01:00:30 +00:00
|
|
|
|
|
|
|
Set pp::implicit true
|
|
|
|
Show Environment 1
|
|
|
|
|
2013-09-04 12:39:35 +00:00
|
|
|
Theorem simple2 (a b c : Bool) : (a ⇒ b ⇒ c) ⇒ (a ⇒ b) ⇒ a ⇒ c :=
|
|
|
|
Discharge (λ H_abc, Discharge (λ H_ab, Discharge (λ H_a,
|
|
|
|
let P_b := (MP H_ab H_a),
|
|
|
|
P_bc := (MP H_abc H_a)
|
|
|
|
in MP P_bc P_b)))
|
|
|
|
|
|
|
|
Show Environment 1
|