238 lines
8.4 KiB
Text
238 lines
8.4 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Author: Robert Y. Lewis
|
|||
|
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
|
|||
|
This construction follows Bishop and Bridges (1985).
|
|||
|
|
|||
|
To do:
|
|||
|
o Break positive naturals into their own file and fill in sorry's
|
|||
|
o Fill in sorrys for helper lemmas that will not be handled by simplifier
|
|||
|
o Rename things and possibly make theorems private
|
|||
|
-/
|
|||
|
|
|||
|
import data.nat data.rat.order data.pnat
|
|||
|
open nat eq eq.ops pnat
|
|||
|
open -[coercions] rat
|
|||
|
local notation 0 := rat.of_num 0
|
|||
|
local notation 1 := rat.of_num 1
|
|||
|
----------------------------------------------------------------------------------------------------
|
|||
|
|
|||
|
-------------------------------------
|
|||
|
-- theorems to add to (ordered) field and/or rat
|
|||
|
|
|||
|
-- this can move to pnat once sorry is filled in
|
|||
|
theorem find_midpoint {a b : ℚ} (H : a > b) : ∃ c : ℚ, a > b + c ∧ c > 0 :=
|
|||
|
sorry
|
|||
|
theorem add_sub_comm (a b c d : ℚ) : a + b - (c + d) = (a - c) + (b - d) :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem s_mul_assoc_lemma_4 {n : ℕ+} {ε q : ℚ} (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) :
|
|||
|
q * n⁻¹ ≤ ε :=
|
|||
|
sorry
|
|||
|
theorem s_mul_assoc_lemma_3 (a b n : ℕ+) (p : ℚ) :
|
|||
|
p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem find_thirds (a b : ℚ) : ∃ n : ℕ+, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b := sorry
|
|||
|
|
|||
|
theorem squeeze {a b : ℚ} (H : ∀ j : ℕ+, a ≤ b + j⁻¹ + j⁻¹ + j⁻¹) : a ≤ b :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem squeeze_2 {a b : ℚ} (H : ∀ ε : ℚ, ε > 0 → a ≥ b - ε) : a ≥ b :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem rewrite_helper (a b c d : ℚ) : a * b - c * d = a * (b - d) + (a - c) * d :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem rewrite_helper3 (a b c d e f g: ℚ) : a * (b + c) - (d * e + f * g) =
|
|||
|
(a * b - d * e) + (a * c - f * g) :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem rewrite_helper4 (a b c d : ℚ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) := sorry
|
|||
|
|
|||
|
theorem rewrite_helper5 (a b x y : ℚ) : a - b = (a - x) + (x - y) + (y - b) := sorry
|
|||
|
|
|||
|
theorem rewrite_helper7 (a b c d x : ℚ) :
|
|||
|
a * b * c - d = (b * c) * (a - x) + (x * b * c - d) := sorry
|
|||
|
|
|||
|
theorem ineq_helper (a b : ℚ) (k m n : ℕ+) (H : a ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹)
|
|||
|
(H2 : b ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) :
|
|||
|
(rat_of_pnat k) * a + b * (rat_of_pnat k) ≤ m⁻¹ + n⁻¹ := sorry
|
|||
|
|
|||
|
theorem factor_lemma (a b c d e : ℚ) : abs (a + b + c - (d + (b + e))) = abs ((a - d) + (c - e)) :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem factor_lemma_2 (a b c d : ℚ) : (a + b) + (c + d) = (a + c) + (d + b) := sorry
|
|||
|
|
|||
|
namespace s
|
|||
|
|
|||
|
notation `seq` := ℕ+ → ℚ
|
|||
|
|
|||
|
definition regular (s : seq) := ∀ m n : ℕ+, abs (s m - s n) ≤ m⁻¹ + n⁻¹
|
|||
|
|
|||
|
definition equiv (s t : seq) := ∀ n : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹
|
|||
|
infix `≡` := equiv
|
|||
|
|
|||
|
theorem equiv.refl (s : seq) : s ≡ s :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem equiv.symm (s t : seq) (H : s ≡ t) : t ≡ s :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem bdd_of_eq {s t : seq} (H : s ≡ t) :
|
|||
|
∀ j : ℕ+, ∀ n : ℕ+, n ≥ 2 * j → abs (s n - t n) ≤ j⁻¹ :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t)
|
|||
|
(H : ∀ j : ℕ+, ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ j⁻¹) : s ≡ t :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem eq_of_bdd_var {s t : seq} (Hs : regular s) (Ht : regular t)
|
|||
|
(H : ∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε) : s ≡ t :=
|
|||
|
sorry
|
|||
|
|
|||
|
set_option pp.beta false
|
|||
|
theorem pnat_bound {ε : ℚ} (Hε : ε > 0) : ∃ p : ℕ+, p⁻¹ ≤ ε :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem bdd_of_eq_var {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
|
|||
|
∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem equiv.trans (s t u : seq) (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
|||
|
(H : s ≡ t) (H2 : t ≡ u) : s ≡ u :=
|
|||
|
sorry
|
|||
|
|
|||
|
-----------------------------------
|
|||
|
-- define operations on cauchy sequences. show operations preserve regularity
|
|||
|
|
|||
|
definition K (s : seq) : ℕ+ := pnat.pos (ubound (abs (s pone)) + 1 + 1) dec_trivial
|
|||
|
|
|||
|
theorem canon_bound {s : seq} (Hs : regular s) (n : ℕ+) : abs (s n) ≤ rat_of_pnat (K s) :=
|
|||
|
sorry
|
|||
|
|
|||
|
definition K₂ (s t : seq) := max (K s) (K t)
|
|||
|
|
|||
|
theorem K₂_symm (s t : seq) : K₂ s t = K₂ t s :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem canon_2_bound_left (s t : seq) (Hs : regular s) (n : ℕ+) :
|
|||
|
abs (s n) ≤ rat_of_pnat (K₂ s t) :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem canon_2_bound_right (s t : seq) (Ht : regular t) (n : ℕ+) :
|
|||
|
abs (t n) ≤ rat_of_pnat (K₂ s t) :=
|
|||
|
sorry
|
|||
|
|
|||
|
definition sadd (s t : seq) : seq := λ n, (s (2 * n)) + (t (2 * n))
|
|||
|
|
|||
|
theorem reg_add_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (sadd s t) :=
|
|||
|
sorry
|
|||
|
|
|||
|
definition smul (s t : seq) : seq := λ n : ℕ+, (s ((K₂ s t) * 2 * n)) * (t ((K₂ s t) * 2 * n))
|
|||
|
|
|||
|
theorem reg_mul_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (smul s t) :=
|
|||
|
sorry
|
|||
|
|
|||
|
definition sneg (s : seq) : seq := λ n : ℕ+, - (s n)
|
|||
|
|
|||
|
theorem reg_neg_reg {s : seq} (Hs : regular s) : regular (sneg s) :=
|
|||
|
sorry
|
|||
|
-----------------------------------
|
|||
|
-- show properties of +, *, -
|
|||
|
|
|||
|
definition zero : seq := λ n, 0
|
|||
|
|
|||
|
definition one : seq := λ n, 1
|
|||
|
|
|||
|
theorem s_add_comm (s t : seq) : sadd s t ≡ sadd t s :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem s_add_assoc (s t u : seq) (Hs : regular s) (Hu : regular u) :
|
|||
|
sadd (sadd s t) u ≡ sadd s (sadd t u) :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem s_mul_comm (s t : seq) : smul s t ≡ smul t s :=
|
|||
|
sorry
|
|||
|
|
|||
|
definition DK (s t : seq) := (K₂ s t) * 2
|
|||
|
theorem DK_rewrite (s t : seq) : (K₂ s t) * 2 = DK s t := rfl
|
|||
|
|
|||
|
definition TK (s t u : seq) := (DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u)
|
|||
|
|
|||
|
theorem TK_rewrite (s t u : seq) :
|
|||
|
(DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u) = TK s t u := rfl
|
|||
|
|
|||
|
theorem s_mul_assoc_lemma (s t u : seq) (a b c d : ℕ+) :
|
|||
|
abs (s a * t a * u b - s c * t d * u d) ≤ abs (t a) * abs (u b) * abs (s a - s c) +
|
|||
|
abs (s c) * abs (t a) * abs (u b - u d) + abs (s c) * abs (u d) * abs (t a - t d) :=
|
|||
|
sorry
|
|||
|
|
|||
|
definition Kq (s : seq) := rat_of_pnat (K s) + 1
|
|||
|
|
|||
|
theorem Kq_bound {s : seq} (H : regular s) : ∀ n, abs (s n) ≤ Kq s :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem Kq_bound_nonneg {s : seq} (H : regular s) : 0 ≤ Kq s :=
|
|||
|
rat.le.trans !abs_nonneg (Kq_bound H 2)
|
|||
|
|
|||
|
theorem Kq_bound_pos {s : seq} (H : regular s) : 0 < Kq s :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem s_mul_assoc_lemma_5 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
|||
|
(a b c : ℕ+) : abs (t a) * abs (u b) * abs (s a - s c) ≤ (Kq t) * (Kq u) * (a⁻¹ + c⁻¹) :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem s_mul_assoc_lemma_2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
|||
|
(a b c d : ℕ+) :
|
|||
|
abs (t a) * abs (u b) * abs (s a - s c) + abs (s c) * abs (t a) * abs (u b - u d)
|
|||
|
+ abs (s c) * abs (u d) * abs (t a - t d) ≤
|
|||
|
(Kq t) * (Kq u) * (a⁻¹ + c⁻¹) + (Kq s) * (Kq t) * (b⁻¹ + d⁻¹) + (Kq s) * (Kq u) * (a⁻¹ + d⁻¹) :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem s_mul_assoc {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) :
|
|||
|
smul (smul s t) u ≡ smul s (smul t u) :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem zero_is_reg : regular zero :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem s_zero_add (s : seq) (H : regular s) : sadd zero s ≡ s :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem s_add_zero (s : seq) (H : regular s) : sadd s zero ≡ s :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem s_neg_cancel (s : seq) (H : regular s) : sadd (sneg s) s ≡ zero :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem neg_s_cancel (s : seq) (H : regular s) : sadd s (sneg s) ≡ zero :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
|
|||
|
(Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : sadd s t ≡ sadd u v :=
|
|||
|
sorry
|
|||
|
|
|||
|
theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c : ℕ+) (j : ℕ+) :
|
|||
|
∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → abs (s (a * n) * t (b * n) - s (c * n) * t (c * n)) ≤ j⁻¹ :=
|
|||
|
begin
|
|||
|
existsi pceil (((rat_of_pnat (K s)) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) *
|
|||
|
(rat_of_pnat (K t))) * (rat_of_pnat j)),
|
|||
|
intros n Hn,
|
|||
|
rewrite rewrite_helper4,
|
|||
|
apply rat.le.trans,
|
|||
|
apply abs_add_le_abs_add_abs,
|
|||
|
apply rat.le.trans,
|
|||
|
rotate 1,
|
|||
|
show n⁻¹ * ((rat_of_pnat (K s)) * (b⁻¹ + c⁻¹)) +
|
|||
|
n⁻¹ * ((a⁻¹ + c⁻¹) * (rat_of_pnat (K t))) ≤ j⁻¹, begin
|
|||
|
rewrite -rat.left_distrib,
|
|||
|
apply rat.le.trans,
|
|||
|
apply rat.mul_le_mul_of_nonneg_right,
|
|||
|
apply pceil_helper Hn,
|
|||
|
repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos),
|
|||
|
end
|
|||
|
end
|
|||
|
end s
|