lean2/tests/lean/run/coe5.lean

41 lines
1 KiB
Text
Raw Normal View History

import logic
namespace setoid
inductive setoid : Type :=
mk_setoid: Π (A : Type'), (A → A → Prop) → setoid
set_option pp.universes true
check setoid
definition test : Type.{2} := setoid.{0}
definition carrier (s : setoid)
:= setoid.rec (λ a eq, a) s
definition eqv {s : setoid} : carrier s → carrier s → Prop
:= setoid.rec (λ a eqv, eqv) s
infix `≈`:50 := eqv
coercion carrier
inductive morphism (s1 s2 : setoid) : Type :=
mk_morphism : Π (f : s1 → s2), (∀ x y, x ≈ y → f x ≈ f y) → morphism s1 s2
check mk_morphism
check λ (s1 s2 : setoid), s1
check λ (s1 s2 : Type), s1
inductive morphism2 (s1 : setoid) (s2 : setoid) : Type :=
mk_morphism2 : Π (f : s1 → s2), (∀ x y, x ≈ y → f x ≈ f y) → morphism2 s1 s2
check morphism2
check mk_morphism2
inductive my_struct : Type :=
mk_foo : Π (s1 s2 : setoid) (s3 s4 : setoid), morphism2 s1 s2 → morphism2 s3 s4 → my_struct
check my_struct
definition tst2 : Type.{4} := my_struct.{1 2 1 2}
end setoid