2015-03-07 00:48:48 +00:00
|
|
|
import data.nat
|
2015-10-14 19:27:09 +00:00
|
|
|
open nat algebra
|
2015-03-07 00:48:48 +00:00
|
|
|
|
|
|
|
theorem tst (a b : nat) (H : a = 0) : a + b = b :=
|
|
|
|
begin
|
|
|
|
revert H,
|
|
|
|
match a with
|
2015-10-14 19:27:09 +00:00
|
|
|
| zero := λ H, by krewrite zero_add
|
2015-03-07 00:48:48 +00:00
|
|
|
| (n+1) := λ H, nat.no_confusion H
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
2015-05-09 03:54:16 +00:00
|
|
|
reveal tst
|
2015-03-07 00:48:48 +00:00
|
|
|
print definition tst
|