lean2/library/logic/connectives.lean

184 lines
5.8 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Jeremy Avigad, Leonardo de Moura
definition imp (a b : Prop) : Prop := a → b
variables {a b c d : Prop}
theorem mt (H1 : a → b) (H2 : ¬b) : ¬a :=
assume Ha : a, absurd (H1 Ha) H2
-- make c explicit and rename to false.elim
theorem false_elim {c : Prop} (H : false) : c :=
false.rec c H
-- not
-- ---
theorem not_elim (H1 : ¬a) (H2 : a) : false := H1 H2
theorem not_intro (H : a → false) : ¬a := H
theorem not_not_intro (Ha : a) : ¬¬a :=
assume Hna : ¬a, absurd Ha Hna
theorem not_implies_left (H : ¬(a → b)) : ¬¬a :=
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
theorem not_implies_right (H : ¬(a → b)) : ¬b :=
assume Hb : b, absurd (assume Ha : a, Hb) H
theorem not_not_em : ¬¬(a ¬a) :=
assume not_em : ¬(a ¬a),
have Hnp : ¬a, from
assume Hp : a, absurd (or.inl Hp) not_em,
absurd (or.inr Hnp) not_em
-- and
-- ---
namespace and
definition not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
assume H : a ∧ b, absurd (elim_left H) Hna
definition not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
assume H : a ∧ b, absurd (elim_right H) Hnb
theorem swap (H : a ∧ b) : b ∧ a :=
intro (elim_right H) (elim_left H)
theorem imp_and (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
elim H₁ (assume Ha : a, assume Hb : b, intro (H₂ Ha) (H₃ Hb))
theorem imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
elim H₁ (assume Ha : a, assume Hc : c, intro (H Ha) Hc)
theorem imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
elim H₁ (assume Hc : c, assume Ha : a, intro Hc (H Ha))
theorem comm : a ∧ b ↔ b ∧ a :=
iff.intro (λH, swap H) (λH, swap H)
theorem assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
iff.intro
(assume H, intro
(elim_left (elim_left H))
(intro (elim_right (elim_left H)) (elim_right H)))
(assume H, intro
(intro (elim_left H) (elim_left (elim_right H)))
(elim_right (elim_right H)))
end and
-- or
-- --
namespace or
definition not_intro (Hna : ¬a) (Hnb : ¬b) : ¬(a b) :=
assume H : a b, or.rec_on H
(assume Ha, absurd Ha Hna)
(assume Hb, absurd Hb Hnb)
theorem imp_or (H₁ : a b) (H₂ : a → c) (H₃ : b → d) : c d :=
elim H₁
(assume Ha : a, inl (H₂ Ha))
(assume Hb : b, inr (H₃ Hb))
theorem imp_or_left (H₁ : a c) (H : a → b) : b c :=
elim H₁
(assume H₂ : a, inl (H H₂))
(assume H₂ : c, inr H₂)
theorem imp_or_right (H₁ : c a) (H : a → b) : c b :=
elim H₁
(assume H₂ : c, inl H₂)
(assume H₂ : a, inr (H H₂))
theorem elim3 (H : a b c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
elim H Ha (assume H₂, elim H₂ Hb Hc)
theorem resolve_right (H₁ : a b) (H₂ : ¬a) : b :=
elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb)
theorem resolve_left (H₁ : a b) (H₂ : ¬b) : a :=
elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂)
theorem swap (H : a b) : b a :=
elim H (assume Ha, inr Ha) (assume Hb, inl Hb)
theorem comm : a b ↔ b a :=
iff.intro (λH, swap H) (λH, swap H)
theorem assoc : (a b) c ↔ a (b c) :=
iff.intro
(assume H, elim H
(assume H₁, elim H₁
(assume Ha, inl Ha)
(assume Hb, inr (inl Hb)))
(assume Hc, inr (inr Hc)))
(assume H, elim H
(assume Ha, (inl (inl Ha)))
(assume H₁, elim H₁
(assume Hb, inl (inr Hb))
(assume Hc, inr Hc)))
end or
-- iff
-- ---
namespace iff
definition def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
!eq.refl
end iff
-- exists_unique
-- -------------
definition exists_unique {A : Type} (p : A → Prop) :=
∃x, p x ∧ ∀y, p y → y = x
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) : ∃!x, p x :=
exists_intro w (and.intro H1 H2)
theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop}
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b :=
obtain w Hw, from H2,
H1 w (and.elim_left Hw) (and.elim_right Hw)
-- if-then-else
-- ------------
section
open eq.ops
variables {A : Type} {c₁ c₂ : Prop}
definition if_true (t e : A) : (if true then t else e) = t :=
if_pos trivial
definition if_false (t e : A) : (if false then t else e) = e :=
if_neg not_false
theorem if_cond_congr [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) (t e : A)
: (if c₁ then t else e) = (if c₂ then t else e) :=
decidable.rec_on H₁
(λ Hc₁ : c₁, decidable.rec_on H₂
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
theorem if_congr_aux [H₁ : decidable c₁] [H₂ : decidable c₂] {t₁ t₂ e₁ e₂ : A}
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁)
theorem if_congr [H₁ : decidable c₁] {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) :=
have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc),
if_congr_aux Hc Ht He
end