lean2/library/data/set/map.lean

153 lines
5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.set.map
Author: Jeremy Avigad, Andrew Zipperer
Functions between subsets of finite types, bundled with the domain and range.
-/
import data.set.function
open eq.ops set
record map {X Y : Type} (a : set X) (b : set Y) := (func : X → Y) (mapsto : maps_to func a b)
attribute map.func [coercion]
namespace map
variables {X Y Z: Type}
variables {a : set X} {b : set Y} {c : set Z}
/- the equivalence relation -/
protected definition equiv [reducible] (f1 f2 : map a b) : Prop := eq_on f1 f2 a
namespace equiv_notation
infix `~` := map.equiv
end equiv_notation
open equiv_notation
protected theorem equiv.refl (f : map a b) : f ~ f := take x, assume H, rfl
protected theorem equiv.symm {f₁ f₂ : map a b} : f₁ ~ f₂ → f₂ ~ f₁ :=
assume H : f₁ ~ f₂,
take x, assume Ha : x ∈ a, eq.symm (H Ha)
protected theorem equiv.trans {f₁ f₂ f₃ : map a b} : f₁ ~ f₂ → f₂ ~ f₃ → f₁ ~ f₃ :=
assume H₁ : f₁ ~ f₂, assume H₂ : f₂ ~ f₃,
take x, assume Ha : x ∈ a, eq.trans (H₁ Ha) (H₂ Ha)
protected theorem equiv.is_equivalence {X Y : Type} (a : set X) (b : set Y) :
equivalence (@equiv X Y a b) :=
mk_equivalence (@equiv X Y a b) (@equiv.refl X Y a b) (@equiv.symm X Y a b) (@equiv.trans X Y a b)
/- compose -/
definition compose (g : map b c) (f : map a b) : map a c :=
map.mk (#function g ∘ f) (maps_to_compose (mapsto g) (mapsto f))
notation g ∘ f := compose g f
/- range -/
definition range (f : map a b) : set Y := image f a
theorem range_eq_range_of_equiv {f1 f2 : map a b} (H : f1 ~ f2) : range f1 = range f2 :=
image_eq_image_of_eq_on H
/- injective -/
definition injective (f : map a b) : Prop := inj_on f a
theorem injective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : injective f1) :
injective f2 :=
inj_on_of_eq_on H1 H2
theorem injective_compose {g : map b c} {f : map a b} (Hg : injective g) (Hf: injective f) :
injective (g ∘ f) :=
inj_on_compose (mapsto f) Hg Hf
/- surjective -/
definition surjective (f : map a b) : Prop := surj_on f a b
theorem surjective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : surjective f1) :
surjective f2 :=
surj_on_of_eq_on H1 H2
theorem surjective_compose {g : map b c} {f : map a b} (Hg : surjective g) (Hf: surjective f) :
surjective (g ∘ f) :=
surj_on_compose Hg Hf
/- bijective -/
definition bijective (f : map a b) : Prop := injective f ∧ surjective f
theorem bijective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : bijective f1) :
bijective f2 :=
and.intro (injective_of_equiv H1 (and.left H2)) (surjective_of_equiv H1 (and.right H2))
theorem bijective_compose {g : map b c} {f : map a b} (Hg : bijective g) (Hf: bijective f) :
bijective (g ∘ f) :=
and.intro
(injective_compose (and.left Hg) (and.left Hf))
(surjective_compose (and.right Hg) (and.right Hf))
/- left inverse -/
-- g is a left inverse to f
definition left_inverse (g : map b a) (f : map a b) : Prop := left_inv_on g f a
theorem left_inverse_of_equiv_left {g1 g2 : map b a} {f : map a b} (eqg : g1 ~ g2)
(H : left_inverse g1 f) : left_inverse g2 f :=
left_inv_on_of_eq_on_left (mapsto f) eqg H
theorem left_inverse_of_equiv_right {g : map b a} {f1 f2 : map a b} (eqf : f1 ~ f2)
(H : left_inverse g f1) : left_inverse g f2 :=
left_inv_on_of_eq_on_right eqf H
theorem injective_of_left_inverse {g : map b a} {f : map a b} (H : left_inverse g f) :
injective f :=
inj_on_of_left_inv_on H
theorem left_inverse_compose {f' : map b a} {g' : map c b} {g : map b c} {f : map a b}
(Hf : left_inverse f' f) (Hg : left_inverse g' g) : left_inverse (f' ∘ g') (g ∘ f) :=
left_inv_on_compose (mapsto f) Hf Hg
/- right inverse -/
-- g is a right inverse to f
definition right_inverse (g : map b a) (f : map a b) : Prop := left_inverse f g
theorem right_inverse_of_equiv_left {g1 g2 : map b a} {f : map a b} (eqg : g1 ~ g2)
(H : right_inverse g1 f) : right_inverse g2 f :=
left_inverse_of_equiv_right eqg H
theorem right_inverse_of_equiv_right {g : map b a} {f1 f2 : map a b} (eqf : f1 ~ f2)
(H : right_inverse g f1) : right_inverse g f2 :=
left_inverse_of_equiv_left eqf H
theorem surjective_of_right_inverse {g : map b a} {f : map a b} (H : right_inverse g f) :
surjective f :=
surj_on_of_right_inv_on (mapsto g) H
theorem right_inverse_compose {f' : map b a} {g' : map c b} {g : map b c} {f : map a b}
(Hf : right_inverse f' f) (Hg : right_inverse g' g) : right_inverse (f' ∘ g') (g ∘ f) :=
left_inverse_compose Hg Hf
theorem equiv_of_left_inverse_of_right_inverse {g1 g2 : map b a} {f : map a b}
(H1 : left_inverse g1 f) (H2 : right_inverse g2 f) : g1 ~ g2 :=
eq_on_of_left_inv_of_right_inv (mapsto g2) H1 H2
/- inverse -/
-- g is an inverse to f
definition is_inverse (g : map b a) (f : map a b) : Prop := left_inverse g f ∧ right_inverse g f
theorem bijective_of_is_inverse {g : map b a} {f : map a b} (H : is_inverse g f) : bijective f :=
and.intro
(injective_of_left_inverse (and.left H))
(surjective_of_right_inverse (and.right H))
end map