2014-08-25 02:58:48 +00:00
|
|
|
import logic
|
2014-07-10 13:43:55 +00:00
|
|
|
|
|
|
|
namespace setoid
|
|
|
|
inductive setoid : Type :=
|
2014-08-22 22:46:10 +00:00
|
|
|
mk_setoid: Π (A : Type'), (A → A → Prop) → setoid
|
2014-07-10 13:43:55 +00:00
|
|
|
|
|
|
|
set_option pp.universes true
|
|
|
|
|
|
|
|
check setoid
|
|
|
|
definition test : Type.{2} := setoid.{0}
|
|
|
|
|
|
|
|
definition carrier (s : setoid)
|
|
|
|
:= setoid_rec (λ a eq, a) s
|
|
|
|
|
2014-07-22 16:43:18 +00:00
|
|
|
definition eqv {s : setoid} : carrier s → carrier s → Prop
|
2014-07-10 13:43:55 +00:00
|
|
|
:= setoid_rec (λ a eqv, eqv) s
|
|
|
|
|
|
|
|
infix `≈`:50 := eqv
|
|
|
|
|
|
|
|
coercion carrier
|
|
|
|
|
|
|
|
inductive morphism (s1 s2 : setoid) : Type :=
|
2014-08-22 22:46:10 +00:00
|
|
|
mk_morphism : Π (f : s1 → s2), (∀ x y, x ≈ y → f x ≈ f y) → morphism s1 s2
|
2014-07-10 13:43:55 +00:00
|
|
|
|
|
|
|
check mk_morphism
|
|
|
|
check λ (s1 s2 : setoid), s1
|
|
|
|
check λ (s1 s2 : Type), s1
|
|
|
|
|
|
|
|
inductive morphism2 (s1 : setoid) (s2 : setoid) : Type :=
|
2014-08-22 22:46:10 +00:00
|
|
|
mk_morphism2 : Π (f : s1 → s2), (∀ x y, x ≈ y → f x ≈ f y) → morphism2 s1 s2
|
2014-07-10 13:43:55 +00:00
|
|
|
|
|
|
|
check morphism2
|
|
|
|
check mk_morphism2
|
|
|
|
|
|
|
|
inductive my_struct : Type :=
|
2014-08-22 22:46:10 +00:00
|
|
|
mk_foo : Π (s1 s2 : setoid) (s3 s4 : setoid), morphism2 s1 s2 → morphism2 s3 s4 → my_struct
|
2014-07-10 13:43:55 +00:00
|
|
|
|
|
|
|
check my_struct
|
2014-08-12 22:00:32 +00:00
|
|
|
definition tst2 : Type.{4} := my_struct.{1 2 1 2}
|
2014-08-07 23:59:08 +00:00
|
|
|
end setoid
|