2016-04-20 18:31:07 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2016 Robert Y. Lewis. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Author: Robert Y. Lewis
|
|
|
|
|
|
|
|
|
|
Derivatives on ℝ
|
|
|
|
|
-/
|
|
|
|
|
import .bounded_linear_operator
|
2016-05-25 19:32:24 +00:00
|
|
|
|
open real nat classical topology analysis set
|
2016-04-20 18:31:07 +00:00
|
|
|
|
noncomputable theory
|
|
|
|
|
|
|
|
|
|
namespace real
|
|
|
|
|
|
|
|
|
|
-- move this to group
|
|
|
|
|
theorem add_sub_self (a b : ℝ) : a + b - a = b :=
|
|
|
|
|
by rewrite [add_sub_assoc, add.comm, sub_add_cancel]
|
|
|
|
|
|
|
|
|
|
-- make instance of const mul bdd lin op?
|
|
|
|
|
|
|
|
|
|
definition derivative_at (f : ℝ → ℝ) (d x : ℝ) := is_frechet_deriv_at f (λ t, d • t) x
|
|
|
|
|
|
2016-05-25 19:32:24 +00:00
|
|
|
|
theorem derivative_at_intro (f : ℝ → ℝ) (d x : ℝ) (H : (λ h, (f (x + h) - f x) / h) ⟶ d [at 0]) :
|
2016-04-20 18:31:07 +00:00
|
|
|
|
derivative_at f d x :=
|
|
|
|
|
begin
|
|
|
|
|
apply is_frechet_deriv_at_intro,
|
|
|
|
|
intros ε Hε,
|
2016-05-25 19:32:24 +00:00
|
|
|
|
cases approaches_at_dest H Hε with δ Hδ,
|
2016-04-20 18:31:07 +00:00
|
|
|
|
existsi δ,
|
|
|
|
|
split,
|
|
|
|
|
exact and.left Hδ,
|
|
|
|
|
intro y Hy,
|
|
|
|
|
rewrite [-sub_zero y at Hy{2}],
|
2016-05-25 19:32:24 +00:00
|
|
|
|
note Hδ' := and.right Hδ y (and.right Hy) (and.left Hy),
|
2016-04-20 18:31:07 +00:00
|
|
|
|
have Hδ'' : abs ((f (x + y) - f x - d * y) / y) < ε,
|
|
|
|
|
by rewrite [-div_sub_div_same, mul_div_cancel _ (and.left Hy)]; apply Hδ',
|
|
|
|
|
show abs (f (x + y) - f x - d * y) / abs y < ε, by rewrite -abs_div; apply Hδ''
|
|
|
|
|
end
|
|
|
|
|
|
2016-05-25 19:32:24 +00:00
|
|
|
|
theorem derivative_at_of_frechet_derivative_at {f g : ℝ → ℝ} [is_bdd_linear_map g] {d x : ℝ}
|
|
|
|
|
(H : is_frechet_deriv_at f g x) (Hg : g = λ x, d * x) :
|
|
|
|
|
derivative_at f d x :=
|
|
|
|
|
by apply is_frechet_deriv_at_of_eq H Hg
|
|
|
|
|
|
2016-04-20 18:31:07 +00:00
|
|
|
|
theorem deriv_at_const (c x : ℝ) : derivative_at (λ t, c) 0 x :=
|
2016-05-25 19:32:24 +00:00
|
|
|
|
derivative_at_of_frechet_derivative_at
|
|
|
|
|
(@frechet_deriv_at_const ℝ ℝ _ _ _ c)
|
|
|
|
|
(funext (λ v, by rewrite zero_mul))
|
2016-04-20 18:31:07 +00:00
|
|
|
|
|
|
|
|
|
theorem deriv_at_id (x : ℝ) : derivative_at (λ t, t) 1 x :=
|
2016-05-25 19:32:24 +00:00
|
|
|
|
derivative_at_of_frechet_derivative_at
|
|
|
|
|
(@frechet_deriv_at_id ℝ ℝ _ _ _)
|
|
|
|
|
(funext (λ v, by rewrite one_mul))
|
|
|
|
|
|
|
|
|
|
theorem deriv_at_mul {f : ℝ → ℝ} {d x : ℝ} (H : derivative_at f d x) (c : ℝ) :
|
|
|
|
|
derivative_at (λ t, c * f t) (c * d) x :=
|
|
|
|
|
derivative_at_of_frechet_derivative_at
|
|
|
|
|
(frechet_deriv_at_smul _ _ c H)
|
|
|
|
|
(funext (λ v, by rewrite mul.assoc))
|
2016-04-20 18:31:07 +00:00
|
|
|
|
|
|
|
|
|
end real
|