2015-05-10 20:37:44 -07:00
|
|
|
import data.list
|
|
|
|
|
|
|
|
inductive typ : Type :=
|
|
|
|
| nat : typ
|
|
|
|
| arr : typ → typ → typ
|
|
|
|
|
|
|
|
inductive const : Type :=
|
|
|
|
| z | s
|
|
|
|
|
|
|
|
inductive exp : Type :=
|
|
|
|
| var : nat → exp
|
|
|
|
| cnst : const → exp
|
|
|
|
| lam : nat → typ → exp → exp
|
|
|
|
| ap : exp → exp → exp
|
|
|
|
|
|
|
|
open exp
|
|
|
|
|
2015-06-09 16:17:29 -07:00
|
|
|
inductive direct_subterm : exp → exp → Prop :=
|
|
|
|
| lam : ∀ n t e, direct_subterm e (lam n t e)
|
|
|
|
| ap_fn : ∀ f a, direct_subterm f (ap f a)
|
|
|
|
| ap_arg : ∀ f a, direct_subterm a (ap f a)
|
|
|
|
|
|
|
|
theorem direct_subterm_wf : well_founded direct_subterm :=
|
|
|
|
begin
|
|
|
|
constructor, intro e, induction e,
|
|
|
|
repeat (constructor; intro y hlt; cases hlt; repeat assumption)
|
|
|
|
end
|
|
|
|
|
|
|
|
definition subterm := tc direct_subterm
|
|
|
|
|
|
|
|
theorem subterm_wf : well_founded subterm :=
|
|
|
|
tc.wf direct_subterm_wf
|
|
|
|
|
2015-05-10 20:37:44 -07:00
|
|
|
inductive is_val : exp → Prop :=
|
|
|
|
| vcnst : Π c, is_val (cnst c)
|
|
|
|
| vlam : Π x t e, is_val (lam x t e)
|
|
|
|
| vcnst_ap : Π {e} c, is_val e → is_val (ap (cnst c) e)
|
|
|
|
|
|
|
|
inductive step : exp → exp → Prop :=
|
|
|
|
infix `➤`:50 := step
|
|
|
|
| stepl : Π {e1 e1'} e2, e1 ➤ e1' → ap e1 e2 ➤ ap e1' e2
|
|
|
|
| stepr : Π {e1 e2 e2'}, is_val e1 → e2 ➤ e2' → ap e1 e2 ➤ ap e1 e2'
|
|
|
|
| subst : Π {x e1 e1' e2} t, is_val e2 → ap (lam x t e1) e2 ➤ e1'
|
|
|
|
|
|
|
|
infix `➤`:50 := step
|
|
|
|
|
|
|
|
open is_val
|
|
|
|
open step
|
|
|
|
|
|
|
|
theorem nostep : ∀ {e} e', is_val e → e ➤ e' → false
|
|
|
|
| nostep e' (vcnst c) Hsteps := by cases Hsteps
|
|
|
|
| nostep e' (vlam x t e) Hsteps := by cases Hsteps
|
|
|
|
| nostep (ap e' e) (@vcnst_ap e c Hval) (stepl e Hbad) :=
|
|
|
|
have Hvalc : is_val (cnst c), from vcnst c,
|
|
|
|
have IH : not (cnst c ➤ e'), from nostep e' Hvalc,
|
|
|
|
absurd Hbad IH
|
|
|
|
| nostep (ap (cnst c) e') (@vcnst_ap e c Hvale) (stepr Hvalc Hbad) :=
|
|
|
|
have IH : not (e ➤ e'), from nostep e' Hvale,
|
|
|
|
absurd Hbad IH
|