26 lines
536 B
Text
26 lines
536 B
Text
|
import standard
|
||
|
using num tactic
|
||
|
|
||
|
inductive inh (A : Type) : Type :=
|
||
|
| inh_intro : A -> inh A
|
||
|
|
||
|
instance inh_intro
|
||
|
|
||
|
theorem inh_bool [instance] : inh Bool
|
||
|
:= inh_intro true
|
||
|
|
||
|
theorem inh_fun [instance] {A B : Type} (H : inh B) : inh (A → B)
|
||
|
:= inh_rec (λ b, inh_intro (λ a : A, b)) H
|
||
|
|
||
|
definition assump := eassumption; now
|
||
|
|
||
|
set_option elaborator.local_instances false
|
||
|
tactic_hint [inh] assump
|
||
|
tactic_hint assump
|
||
|
|
||
|
theorem tst {A B : Type} (H : inh B) : inh (A → B → B)
|
||
|
|
||
|
theorem T1 {A : Type} (a : A) : inh A
|
||
|
|
||
|
theorem T2 : inh Bool
|