lean2/library/data/nat/pairing.lean

96 lines
3.3 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Elegant pairing function.
-/
import data.nat.sqrt data.nat.div
open prod decidable
open algebra
namespace nat
definition mkpair (a b : nat) : nat :=
if a < b then b*b + a else a*a + a + b
definition unpair (n : nat) : nat × nat :=
let s := sqrt n in
if n - s*s < s then (n - s*s, s) else (s, n - s*s - s)
theorem mkpair_unpair (n : nat) : mkpair (pr1 (unpair n)) (pr2 (unpair n)) = n :=
let s := sqrt n in
by_cases
(suppose n - s*s < s,
begin
esimp [unpair],
rewrite [if_pos this],
esimp [mkpair],
rewrite [if_pos this, add_sub_of_le (sqrt_lower n)]
end)
(suppose h₁ : ¬ n - s*s < s,
have s ≤ n - s*s, from le_of_not_gt h₁,
assert s + s*s ≤ n - s*s + s*s, from add_le_add_right this (s*s),
assert s*s + s ≤ n, by rewrite [sub_add_cancel (sqrt_lower n) at this, add.comm at this]; assumption,
have n ≤ s*s + s + s, from sqrt_upper n,
have n - s*s ≤ s + s, from calc
n - s*s ≤ (s*s + s + s) - s*s : sub_le_sub_right this (s*s)
... = (s*s + (s+s)) - s*s : by rewrite add.assoc
... = s + s : by rewrite add_sub_cancel_left,
have n - s*s - s ≤ s, from calc
n - s*s - s ≤ (s + s) - s : sub_le_sub_right this s
... = s : by rewrite add_sub_cancel_left,
assert h₂ : ¬ s < n - s*s - s, from not_lt_of_ge this,
begin
esimp [unpair],
rewrite [if_neg h₁], esimp,
esimp [mkpair],
rewrite [if_neg h₂, sub_sub, add_sub_of_le `s*s + s ≤ n`],
end)
theorem unpair_mkpair (a b : nat) : unpair (mkpair a b) = (a, b) :=
by_cases
(suppose a < b,
assert a ≤ b + b, from calc
a ≤ b : le_of_lt this
... ≤ b+b : !le_add_right,
begin
esimp [mkpair],
rewrite [if_pos `a < b`],
esimp [unpair],
rewrite [sqrt_offset_eq `a ≤ b + b`, add_sub_cancel_left, if_pos `a < b`]
end)
(suppose ¬ a < b,
have b ≤ a, from le_of_not_gt this,
assert a + b ≤ a + a, from add_le_add_left this a,
have a + b ≥ a, from !le_add_right,
assert ¬ a + b < a, from not_lt_of_ge this,
begin
esimp [mkpair],
rewrite [if_neg `¬ a < b`],
esimp [unpair],
rewrite [add.assoc (a * a) a b, sqrt_offset_eq `a + b ≤ a + a`, *add_sub_cancel_left, if_neg `¬ a + b < a`]
end)
open prod.ops
theorem unpair_lt_aux {n : nat} : n ≥ 1 → (unpair n).1 < n :=
suppose n ≥ 1,
or.elim (eq_or_lt_of_le this)
(suppose 1 = n, by subst n; exact dec_trivial)
(suppose n > 1,
let s := sqrt n in
by_cases
(suppose h : n - s*s < s,
assert n > 0, from lt_of_succ_lt `n > 1`,
assert sqrt n > 0, from sqrt_pos_of_pos this,
assert sqrt n * sqrt n > 0, from mul_pos this this,
begin unfold unpair, rewrite [if_pos h], esimp, exact sub_lt `n > 0` `sqrt n * sqrt n > 0` end)
(suppose ¬ n - s*s < s, begin unfold unpair, rewrite [if_neg this], esimp, apply sqrt_lt `n > 1` end))
theorem unpair_lt : ∀ (n : nat), (unpair n).1 < succ n
| 0 := dec_trivial
| (succ n) :=
have (unpair (succ n)).1 < succ n, from unpair_lt_aux dec_trivial,
lt.step this
end nat