lean2/hott/algebra/category/limits/adjoint.hlean

45 lines
1.6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
colimit_functor ⊣ Δ ⊣ limit_functor
-/
import .colimits ..functor.adjoint
open eq functor category is_trunc prod nat_trans
namespace category
definition limit_functor_adjoint [constructor] (D I : Precategory) [H : has_limits_of_shape D I] :
constant_diagram D I ⊣ limit_functor D I :=
adjoint.mk'
begin
fapply natural_iso.MK,
{ intro dF η, induction dF with d F, esimp at *,
fapply hom_limit,
{ exact natural_map η},
{ intro i j f, exact !naturality ⬝ !id_right}},
{ esimp, intro dF dF' fθ, induction dF with d F, induction dF' with d' F',
induction fθ with f θ, esimp at *, apply eq_of_homotopy, intro η,
apply eq_hom_limit, intro i,
rewrite [assoc, limit_hom_limit_commute,
-assoc, assoc (limit_morphism F i), hom_limit_commute]},
{ esimp, intro dF f, induction dF with d F, esimp at *,
refine !limit_nat_trans ∘n constant_nat_trans I f},
{ esimp, intro dF, induction dF with d F, esimp, apply eq_of_homotopy, intro η,
apply nat_trans_eq, intro i, esimp, apply hom_limit_commute},
{ esimp, intro dF, induction dF with d F, esimp, apply eq_of_homotopy, intro f,
symmetry, apply eq_hom_limit, intro i, reflexivity}
end
/-
definition adjoint_colimit_functor [constructor] (D I : Precategory)
[H : has_colimits_of_shape D I] : colimit_functor D I ⊣ constant_diagram D I :=
have H : colimit_functor D I ⊣ (constant_diagram Dᵒᵖ Iᵒᵖ)ᵒᵖ', from _,
_
-/
end category