lean2/library/algebra/group_bigops.lean

554 lines
22 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
Finite products on a monoid, and finite sums on an additive monoid. There are three versions:
Prodl, Suml : products and sums over lists
Prod, Sum (in namespace finset) : products and sums over finsets
Prod, Sum (in namespace set) : products and sums over finite sets
We also define internal functions Prodl_semigroup and Prod_semigroup that can be used to define
operations over commutative semigroups where there is no unit. We put them into their own namespaces
so that they won't be very prominent. They can be used to define Min and Max in the number systems,
or Inter for finsets.
We have to be careful with dependencies. This theory imports files from finset and list, which
import basic files from nat.
-/
import .group .group_power data.list.basic data.list.perm data.finset.basic data.set.finite
open function binary quot subtype list
variables {A B : Type}
variable [deceqA : decidable_eq A]
definition mulf [sgB : semigroup B] (f : A → B) : B → A → B :=
λ b a, b * f a
/-
-- list versions.
-/
/- Prodl_semigroup: product indexed by a list, with a default for the empty list -/
namespace Prodl_semigroup
variable [semigroup B]
definition Prodl_semigroup (dflt : B) : ∀ (l : list A) (f : A → B), B
| [] f := dflt
| (a :: l) f := list.foldl (mulf f) (f a) l
theorem Prodl_semigroup_nil (dflt : B) (f : A → B) : Prodl_semigroup dflt nil f = dflt := rfl
theorem Prodl_semigroup_cons (dflt : B) (f : A → B) (a : A) (l : list A) :
Prodl_semigroup dflt (a::l) f = list.foldl (mulf f) (f a) l := rfl
theorem Prodl_semigroup_singleton (dflt : B) (f : A → B) (a : A) :
Prodl_semigroup dflt [a] f = f a := rfl
theorem Prodl_semigroup_cons_cons (dflt : B) (f : A → B) (a₁ a₂ : A) (l : list A) :
Prodl_semigroup dflt (a₁::a₂::l) f = f a₁ * Prodl_semigroup dflt (a₂::l) f :=
begin
rewrite [↑Prodl_semigroup, foldl_cons, ↑mulf at {2}],
generalize (f a₂),
induction l with a l ih,
{intro x, exact rfl},
intro x,
rewrite [*foldl_cons, ↑mulf at {2,3}, mul.assoc, ih]
end
theorem Prodl_semigroup_binary (dflt : B) (f : A → B) (a₁ a₂ : A) :
Prodl_semigroup dflt [a₁, a₂] f = f a₁ * f a₂ := rfl
section deceqA
include deceqA
theorem Prodl_semigroup_insert_of_mem (dflt : B) (f : A → B) {a : A} {l : list A} : a ∈ l →
Prodl_semigroup dflt (insert a l) f = Prodl_semigroup dflt l f :=
assume ainl, by rewrite [insert_eq_of_mem ainl]
theorem Prodl_semigroup_insert_insert_of_not_mem (dflt : B) (f : A → B)
{a₁ a₂ : A} {l : list A} (h₁ : a₂ ∉ l) (h₂ : a₁ ∉ insert a₂ l) :
Prodl_semigroup dflt (insert a₁ (insert a₂ l)) f =
f a₁ * Prodl_semigroup dflt (insert a₂ l) f :=
by rewrite [insert_eq_of_not_mem h₂, insert_eq_of_not_mem h₁, Prodl_semigroup_cons_cons]
end deceqA
end Prodl_semigroup
/- Prodl: product indexed by a list -/
section monoid
variable [monoid B]
definition Prodl (l : list A) (f : A → B) : B :=
list.foldl (mulf f) 1 l
-- ∏ x ← l, f x
notation `∏` binders `←` l `, ` r:(scoped f, Prodl l f) := r
private theorem foldl_const (f : A → B) :
∀ (l : list A) (b : B), foldl (mulf f) b l = b * foldl (mulf f) 1 l
| [] b := by rewrite [*foldl_nil, mul_one]
| (a::l) b := by rewrite [*foldl_cons, foldl_const, {foldl _ (mulf f 1 a) _}foldl_const, ↑mulf,
one_mul, mul.assoc]
theorem Prodl_nil (f : A → B) : Prodl [] f = 1 := rfl
theorem Prodl_cons (f : A → B) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f :=
by rewrite [↑Prodl, foldl_cons, foldl_const, ↑mulf, one_mul]
theorem Prodl_append :
∀ (l₁ l₂ : list A) (f : A → B), Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f
| [] l₂ f := by rewrite [append_nil_left, Prodl_nil, one_mul]
| (a::l) l₂ f := by rewrite [append_cons, *Prodl_cons, Prodl_append, mul.assoc]
section deceqA
include deceqA
theorem Prodl_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l →
Prodl (insert a l) f = Prodl l f :=
assume ainl, by rewrite [insert_eq_of_mem ainl]
theorem Prodl_insert_of_not_mem (f : A → B) {a : A} {l : list A} :
a ∉ l → Prodl (insert a l) f = f a * Prodl l f :=
assume nainl, by rewrite [insert_eq_of_not_mem nainl, Prodl_cons]
theorem Prodl_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f :=
by rewrite [union_eq_append d, Prodl_append]
end deceqA
theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = (1:B)
| [] := rfl
| (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one]
lemma Prodl_singleton (a : A) (f : A → B) : Prodl [a] f = f a :=
!one_mul
lemma Prodl_map {f : A → B} :
∀ {l : list A}, Prodl l f = Prodl (map f l) id
| nil := by rewrite [map_nil]
| (a::l) := begin rewrite [map_cons, Prodl_cons f, Prodl_cons id (f a), Prodl_map] end
open nat
lemma Prodl_eq_pow_of_const {f : A → B} :
∀ {l : list A} b, (∀ a, a ∈ l → f a = b) → Prodl l f = b ^ length l
| nil := take b, assume Pconst, by rewrite [length_nil, {b^0}pow_zero]
| (a::l) := take b, assume Pconst,
have Pconstl : ∀ a', a' ∈ l → f a' = b,
from take a' Pa'in, Pconst a' (mem_cons_of_mem a Pa'in),
by rewrite [Prodl_cons f, Pconst a !mem_cons, Prodl_eq_pow_of_const b Pconstl, length_cons,
add_one, pow_succ b]
end monoid
section comm_monoid
variable [comm_monoid B]
theorem Prodl_mul (l : list A) (f g : A → B) : Prodl l (λx, f x * g x) = Prodl l f * Prodl l g :=
list.induction_on l
(by rewrite [*Prodl_nil, mul_one])
(take a l,
assume IH,
by rewrite [*Prodl_cons, IH, *mul.assoc, mul.left_comm (Prodl l f)])
end comm_monoid
/- Suml: sum indexed by a list -/
section add_monoid
variable [add_monoid B]
local attribute add_monoid.to_monoid [trans_instance]
definition Suml (l : list A) (f : A → B) : B := Prodl l f
-- ∑ x ← l, f x
notation `∑` binders `←` l `, ` r:(scoped f, Suml l f) := r
theorem Suml_nil (f : A → B) : Suml [] f = 0 := Prodl_nil f
theorem Suml_cons (f : A → B) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f :=
Prodl_cons f a l
theorem Suml_append (l₁ l₂ : list A) (f : A → B) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f :=
Prodl_append l₁ l₂ f
section deceqA
include deceqA
theorem Suml_insert_of_mem (f : A → B) {a : A} {l : list A} (H : a ∈ l) :
Suml (insert a l) f = Suml l f := Prodl_insert_of_mem f H
theorem Suml_insert_of_not_mem (f : A → B) {a : A} {l : list A} (H : a ∉ l) :
Suml (insert a l) f = f a + Suml l f := Prodl_insert_of_not_mem f H
theorem Suml_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := Prodl_union f d
end deceqA
theorem Suml_zero (l : list A) : Suml l (λ x, 0) = (0:B) := Prodl_one l
theorem Suml_singleton (a : A) (f : A → B) : Suml [a] f = f a := Prodl_singleton a f
end add_monoid
section add_comm_monoid
variable [acmB : add_comm_monoid B]
include acmB
local attribute add_comm_monoid.to_comm_monoid [trans_instance]
theorem Suml_add (l : list A) (f g : A → B) : Suml l (λx, f x + g x) = Suml l f + Suml l g :=
Prodl_mul l f g
end add_comm_monoid
/-
-- finset versions
-/
/- Prod_semigroup : product indexed by a finset, with a default for the empty finset -/
namespace finset
variable [comm_semigroup B]
theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) :=
right_commutative_comp_right (@has_mul.mul B _) f (@mul.right_comm B _)
namespace Prod_semigroup
open Prodl_semigroup
private theorem Prodl_semigroup_eq_Prodl_semigroup_of_perm
(dflt : B) (f : A → B) {l₁ l₂ : list A} (p : perm l₁ l₂) :
Prodl_semigroup dflt l₁ f = Prodl_semigroup dflt l₂ f :=
perm.induction_on p
rfl -- nil nil
(take x l₁ l₂ p ih,
by rewrite [*Prodl_semigroup_cons, perm.foldl_eq_of_perm (mulf_rcomm f) p])
(take x y l,
begin rewrite [*Prodl_semigroup_cons, *foldl_cons, ↑mulf, mul.comm] end)
(take l₁ l₂ l₃ p₁ p₂ ih₁ ih₂, eq.trans ih₁ ih₂)
definition Prod_semigroup (dflt : B) (s : finset A) (f : A → B) : B :=
quot.lift_on s
(λ l, Prodl_semigroup dflt (elt_of l) f)
(λ l₁ l₂ p, Prodl_semigroup_eq_Prodl_semigroup_of_perm dflt f p)
theorem Prod_semigroup_empty (dflt : B) (f : A → B) : Prod_semigroup dflt ∅ f = dflt := rfl
section deceqA
include deceqA
theorem Prod_semigroup_singleton (dflt : B) (f : A → B) (a : A) :
Prod_semigroup dflt '{a} f = f a := rfl
theorem Prod_semigroup_insert_insert (dflt : B) (f : A → B) {a₁ a₂ : A} {s : finset A} :
a₂ ∉ s → a₁ ∉ insert a₂ s →
Prod_semigroup dflt (insert a₁ (insert a₂ s)) f =
f a₁ * Prod_semigroup dflt (insert a₂ s) f :=
quot.induction_on s
(take l h₁ h₂, Prodl_semigroup_insert_insert_of_not_mem dflt f h₁ h₂)
theorem Prod_semigroup_insert (dflt : B) (f : A → B) {a : A} {s : finset A} (anins : a ∉ s)
(sne : s ≠ ∅) :
Prod_semigroup dflt (insert a s) f = f a * Prod_semigroup dflt s f :=
obtain a' (a's : a' ∈ s), from exists_mem_of_ne_empty sne,
have H : s = insert a' (erase a' s), from eq.symm (insert_erase a's),
begin
rewrite [H, Prod_semigroup_insert_insert dflt f !not_mem_erase (eq.subst H anins)]
end
end deceqA
end Prod_semigroup
end finset
/- Prod: product indexed by a finset -/
namespace finset
variable [comm_monoid B]
theorem Prodl_eq_Prodl_of_perm (f : A → B) {l₁ l₂ : list A} :
perm l₁ l₂ → Prodl l₁ f = Prodl l₂ f :=
λ p, perm.foldl_eq_of_perm (mulf_rcomm f) p 1
definition Prod (s : finset A) (f : A → B) : B :=
quot.lift_on s
(λ l, Prodl (elt_of l) f)
(λ l₁ l₂ p, Prodl_eq_Prodl_of_perm f p)
-- ∏ x ∈ s, f x
notation `∏` binders `∈` s `, ` r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → B) : Prod ∅ f = 1 :=
Prodl_nil f
theorem Prod_mul (s : finset A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
quot.induction_on s (take u, !Prodl_mul)
theorem Prod_one (s : finset A) : Prod s (λ x, 1) = (1:B) :=
quot.induction_on s (take u, !Prodl_one)
section deceqA
include deceqA
theorem Prod_insert_of_mem (f : A → B) {a : A} {s : finset A} :
a ∈ s → Prod (insert a s) f = Prod s f :=
quot.induction_on s
(λ l ainl, Prodl_insert_of_mem f ainl)
theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : finset A} :
a ∉ s → Prod (insert a s) f = f a * Prod s f :=
quot.induction_on s
(λ l nainl, Prodl_insert_of_not_mem f nainl)
theorem Prod_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f :=
have H1 : disjoint s₁ s₂ → Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f, from
quot.induction_on₂ s₁ s₂
(λ l₁ l₂ d, Prodl_union f d),
H1 (disjoint_of_inter_eq_empty disj)
theorem Prod_ext {s : finset A} {f g : A → B} :
(∀{x}, x ∈ s → f x = g x) → Prod s f = Prod s g :=
finset.induction_on s
(assume H, rfl)
(take x s', assume H1 : x ∉ s',
assume IH : (∀ {x : A}, x ∈ s' → f x = g x) → Prod s' f = Prod s' g,
assume H2 : ∀{y}, y ∈ insert x s' → f y = g y,
have H3 : ∀y, y ∈ s' → f y = g y, from
take y, assume H', H2 (mem_insert_of_mem _ H'),
have H4 : f x = g x, from H2 !mem_insert,
by rewrite [Prod_insert_of_not_mem f H1, Prod_insert_of_not_mem g H1, IH H3, H4])
theorem Prod_singleton (a : A) (f : A → B) : Prod '{a} f = f a :=
have a ∉ ∅, from not_mem_empty a,
by rewrite [Prod_insert_of_not_mem f this, Prod_empty, mul_one]
theorem Prod_image {C : Type} [deceqC : decidable_eq C] {s : finset A} (f : C → B) {g : A → C}
(H : set.inj_on g (to_set s)) :
(∏ j ∈ image g s, f j) = (∏ i ∈ s, f (g i)) :=
begin
induction s with a s anins ih,
{rewrite [*Prod_empty]},
have injg : set.inj_on g (to_set s),
from set.inj_on_of_inj_on_of_subset H (λ x, mem_insert_of_mem a),
have g a ∉ g ' s, from
suppose g a ∈ g ' s,
obtain b [(bs : b ∈ s) (gbeq : g b = g a)], from exists_of_mem_image this,
have aias : set.mem a (to_set (insert a s)),
by rewrite to_set_insert; apply set.mem_insert a s,
have bias : set.mem b (to_set (insert a s)),
by rewrite to_set_insert; apply set.mem_insert_of_mem; exact bs,
have b = a, from H bias aias gbeq,
show false, from anins (eq.subst this bs),
rewrite [image_insert, Prod_insert_of_not_mem _ this, Prod_insert_of_not_mem _ anins, ih injg]
end
theorem Prod_eq_of_bij_on {C : Type} [deceqC : decidable_eq C] {s : finset A} {t : finset C}
(f : C → B) {g : A → C} (H : set.bij_on g (to_set s) (to_set t)) :
(∏ j ∈ t, f j) = (∏ i ∈ s, f (g i)) :=
have g ' s = t,
by apply eq_of_to_set_eq_to_set; rewrite to_set_image; exact set.image_eq_of_bij_on H,
using this, by rewrite [-this, Prod_image f (and.left (and.right H))]
end deceqA
end finset
/- Sum: sum indexed by a finset -/
namespace finset
variable [add_comm_monoid B]
local attribute add_comm_monoid.to_comm_monoid [trans_instance]
definition Sum (s : finset A) (f : A → B) : B := Prod s f
-- ∑ x ∈ s, f x
notation `∑` binders `∈` s `, ` r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f
theorem Sum_add (s : finset A) (f g : A → B) :
Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g
theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = (0:B) := Prod_one s
section deceqA
include deceqA
theorem Sum_insert_of_mem (f : A → B) {a : A} {s : finset A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : finset A} (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H
theorem Sum_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj
theorem Sum_ext {s : finset A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := Prod_ext H
theorem Sum_singleton (a : A) (f : A → B) : Sum '{a} f = f a := Prod_singleton a f
theorem Sum_image {C : Type} [deceqC : decidable_eq C] {s : finset A} (f : C → B) {g : A → C}
(H : set.inj_on g (to_set s)) :
(∑ j ∈ image g s, f j) = (∑ i ∈ s, f (g i)) := Prod_image f H
theorem Sum_eq_of_bij_on {C : Type} [deceqC : decidable_eq C] {s : finset A} {t : finset C}
(f : C → B) {g : A → C} (H : set.bij_on g (to_set s) (to_set t)) :
(∑ j ∈ t, f j) = (∑ i ∈ s, f (g i)) := Prod_eq_of_bij_on f H
end deceqA
end finset
/-
-- set versions
-/
namespace set
open classical
/- Prod: product indexed by a set -/
section Prod
variable [comm_monoid B]
noncomputable definition Prod (s : set A) (f : A → B) : B := finset.Prod (to_finset s) f
-- ∏ x ∈ s, f x
notation `∏` binders `∈` s `, ` r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → B) : Prod ∅ f = 1 :=
by rewrite [↑Prod, to_finset_empty]
theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Prod s f = 1 :=
by rewrite [↑Prod, to_finset_of_not_finite nfins]
theorem Prod_mul (s : set A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
by rewrite [↑Prod, finset.Prod_mul]
theorem Prod_one (s : set A) : Prod s (λ x, 1) = (1:B) :=
by rewrite [↑Prod, finset.Prod_one]
theorem Prod_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) :
Prod (insert a s) f = Prod s f :=
by_cases
(suppose finite s,
have (#finset a ∈ set.to_finset s), by rewrite mem_to_finset_eq; apply H,
by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_mem f this])
(assume nfs : ¬ finite s,
have ¬ finite (insert a s), from assume H, nfs (finite_of_finite_insert H),
by rewrite [Prod_of_not_finite nfs, Prod_of_not_finite this])
theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) :
Prod (insert a s) f = f a * Prod s f :=
have (#finset a ∉ set.to_finset s), by rewrite mem_to_finset_eq; apply H,
by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_not_mem f this]
theorem Prod_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f :=
begin
rewrite [↑Prod, to_finset_union],
apply finset.Prod_union,
apply finset.eq_of_to_set_eq_to_set,
rewrite [finset.to_set_inter, *to_set_to_finset, finset.to_set_empty, disj]
end
theorem Prod_ext {s : set A} {f g : A → B} (H : ∀{x}, x ∈ s → f x = g x) : Prod s f = Prod s g :=
by_cases
(suppose finite s,
by esimp [Prod]; apply finset.Prod_ext; intro x; rewrite [mem_to_finset_eq]; apply H)
(assume nfs : ¬ finite s,
by rewrite [*Prod_of_not_finite nfs])
theorem Prod_singleton (a : A) (f : A → B) : Prod '{a} f = f a :=
by rewrite [↑Prod, to_finset_insert, to_finset_empty, finset.Prod_singleton]
theorem Prod_image {C : Type} {s : set A} [fins : finite s] (f : C → B) {g : A → C}
(H : inj_on g s) :
(∏ j ∈ image g s, f j) = (∏ i ∈ s, f (g i)) :=
begin
have H' : inj_on g (finset.to_set (set.to_finset s)), by rewrite to_set_to_finset; exact H,
rewrite [↑Prod, to_finset_image g s, finset.Prod_image f H']
end
theorem Prod_eq_of_bij_on {C : Type} {s : set A} {t : set C} (f : C → B)
{g : A → C} (H : bij_on g s t) :
(∏ j ∈ t, f j) = (∏ i ∈ s, f (g i)) :=
by_cases
(suppose finite s,
have g ' s = t, from image_eq_of_bij_on H,
using this, by rewrite [-this, Prod_image f (and.left (and.right H))])
(assume nfins : ¬ finite s,
have nfint : ¬ finite t, from
suppose finite t,
have finite s, from finite_of_bij_on' H,
show false, from nfins this,
by rewrite [Prod_of_not_finite nfins, Prod_of_not_finite nfint])
end Prod
/- Sum: sum indexed by a set -/
section Sum
variable [add_comm_monoid B]
local attribute add_comm_monoid.to_comm_monoid [trans_instance]
noncomputable definition Sum (s : set A) (f : A → B) : B := Prod s f
proposition Sum_def (s : set A) (f : A → B) : Sum s f = finset.Sum (to_finset s) f := rfl
-- ∑ x ∈ s, f x
notation `∑` binders `∈` s `, ` r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f
theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Sum s f = 0 :=
Prod_of_not_finite nfins f
theorem Sum_add (s : set A) (f g : A → B) :
Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g
theorem Sum_zero (s : set A) : Sum s (λ x, 0) = (0:B) := Prod_one s
theorem Sum_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H
theorem Sum_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj
theorem Sum_ext {s : set A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := Prod_ext H
theorem Sum_singleton (a : A) (f : A → B) : Sum '{a} f = f a :=
Prod_singleton a f
theorem Sum_image {C : Type} {s : set A} [fins : finite s] (f : C → B) {g : A → C}
(H : inj_on g s) :
(∑ j ∈ image g s, f j) = (∑ i ∈ s, f (g i)) := Prod_image f H
theorem Sum_eq_of_bij_on {C : Type} {s : set A} {t : set C} (f : C → B) {g : A → C}
(H : bij_on g s t) :
(∑ j ∈ t, f j) = (∑ i ∈ s, f (g i)) := Prod_eq_of_bij_on f H
end Sum
/- Prod_semigroup : product indexed by a set, with a default for the empty set -/
namespace Prod_semigroup
variable [comm_semigroup B]
noncomputable definition Prod_semigroup (dflt : B) (s : set A) (f : A → B) : B :=
finset.Prod_semigroup.Prod_semigroup dflt (to_finset s) f
theorem Prod_semigroup_empty (dflt : B) (f : A → B) : Prod_semigroup dflt ∅ f = dflt :=
by rewrite [↑Prod_semigroup, to_finset_empty]
theorem Prod_semigroup_of_not_finite (dflt : B) {s : set A} (nfins : ¬ finite s) (f : A → B) :
Prod_semigroup dflt s f = dflt :=
by rewrite [↑Prod_semigroup, to_finset_of_not_finite nfins]
theorem Prod_semigroup_singleton (dflt : B) (f : A → B) (a : A) :
Prod_semigroup dflt ('{a}) f = f a :=
by rewrite [↑Prod_semigroup, to_finset_insert, to_finset_empty,
finset.Prod_semigroup.Prod_semigroup_singleton dflt f a]
theorem Prod_semigroup_insert_insert (dflt : B) (f : A → B) {a₁ a₂ : A} {s : set A}
[h : finite s] :
a₂ ∉ s → a₁ ∉ insert a₂ s →
Prod_semigroup dflt (insert a₁ (insert a₂ s)) f =
f a₁ * Prod_semigroup dflt (insert a₂ s) f :=
begin
rewrite [↑Prod_semigroup, -+mem_to_finset_eq, +to_finset_insert],
intro h1 h2,
apply finset.Prod_semigroup.Prod_semigroup_insert_insert dflt f h1 h2
end
theorem Prod_semigroup_insert (dflt : B) (f : A → B) {a : A} {s : set A} [h : finite s] :
a ∉ s → s ≠ ∅ → Prod_semigroup dflt (insert a s) f = f a * Prod_semigroup dflt s f :=
begin
rewrite [↑Prod_semigroup, -mem_to_finset_eq, +to_finset_insert, -finset.to_set_empty],
intro h1 h2,
apply finset.Prod_semigroup.Prod_semigroup_insert dflt f h1,
intro h3, revert h2, rewrite [-h3, to_set_to_finset],
intro h4, exact (h4 rfl)
end
end Prod_semigroup
end set