2016-02-20 15:23:41 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Robert Y. Lewis, Jeremy Avigad
|
|
|
|
|
|
|
|
|
|
The square root function.
|
|
|
|
|
-/
|
|
|
|
|
import .ivt
|
2016-04-19 22:17:53 +00:00
|
|
|
|
open analysis real classical topology
|
2016-02-20 15:23:41 +00:00
|
|
|
|
noncomputable theory
|
|
|
|
|
|
|
|
|
|
private definition sqr_lb (x : ℝ) : ℝ := 0
|
|
|
|
|
|
|
|
|
|
private theorem sqr_lb_is_lb (x : ℝ) (H : x ≥ 0) : (sqr_lb x) * (sqr_lb x) ≤ x :=
|
|
|
|
|
by rewrite [↑sqr_lb, zero_mul]; assumption
|
|
|
|
|
|
|
|
|
|
private definition sqr_ub (x : ℝ) : ℝ := x + 1
|
|
|
|
|
|
|
|
|
|
private theorem sqr_ub_is_ub (x : ℝ) (H : x ≥ 0) : (sqr_ub x) * (sqr_ub x) ≥ x :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite [↑sqr_ub, left_distrib, mul_one, right_distrib, one_mul, {x + 1}add.comm, -*add.assoc],
|
|
|
|
|
apply le_add_of_nonneg_left,
|
|
|
|
|
repeat apply add_nonneg,
|
|
|
|
|
apply mul_nonneg,
|
|
|
|
|
repeat assumption,
|
|
|
|
|
apply zero_le_one
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
private theorem lb_le_ub (x : ℝ) (H : x ≥ 0) : sqr_lb x ≤ sqr_ub x :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite [↑sqr_lb, ↑sqr_ub],
|
|
|
|
|
apply add_nonneg,
|
|
|
|
|
assumption,
|
|
|
|
|
apply zero_le_one
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
private lemma sqr_cts : continuous (λ x : ℝ, x * x) := continuous_mul_of_continuous id_continuous id_continuous
|
|
|
|
|
|
|
|
|
|
definition sqrt (x : ℝ) : ℝ :=
|
|
|
|
|
if H : x ≥ 0 then
|
|
|
|
|
some (intermediate_value_incr_weak sqr_cts (lb_le_ub x H) (sqr_lb_is_lb x H) (sqr_ub_is_ub x H))
|
|
|
|
|
else 0
|
|
|
|
|
|
|
|
|
|
private theorem sqrt_spec {x : ℝ} (H : x ≥ 0) : sqrt x * sqrt x = x ∧ sqrt x ≥ 0 :=
|
|
|
|
|
begin
|
|
|
|
|
rewrite [↑sqrt, dif_pos H],
|
|
|
|
|
note Hs := some_spec (intermediate_value_incr_weak sqr_cts (lb_le_ub x H)
|
|
|
|
|
(sqr_lb_is_lb x H) (sqr_ub_is_ub x H)),
|
|
|
|
|
cases Hs with Hs1 Hs2,
|
|
|
|
|
cases Hs2 with Hs2a Hs2b,
|
|
|
|
|
exact and.intro Hs2b Hs1
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
theorem sqrt_mul_self {x : ℝ} (H : x ≥ 0) : sqrt x * sqrt x = x := and.left (sqrt_spec H)
|
|
|
|
|
|
|
|
|
|
theorem sqrt_nonneg (x : ℝ) : sqrt x ≥ 0 :=
|
|
|
|
|
if H : x ≥ 0 then and.right (sqrt_spec H) else by rewrite [↑sqrt, dif_neg H]; exact le.refl 0
|
|
|
|
|
|
|
|
|
|
theorem sqrt_squared {x : ℝ} (H : x ≥ 0) : (sqrt x)^2 = x :=
|
|
|
|
|
by krewrite [pow_two, sqrt_mul_self H]
|
|
|
|
|
|
|
|
|
|
theorem sqrt_zero : sqrt (0 : ℝ) = 0 :=
|
|
|
|
|
have sqrt 0 * sqrt 0 = 0, from sqrt_mul_self !le.refl,
|
|
|
|
|
or.elim (eq_zero_or_eq_zero_of_mul_eq_zero this) (λ H, H) (λ H, H)
|
|
|
|
|
|
|
|
|
|
theorem sqrt_squared_of_nonneg {x : ℝ} (H : x ≥ 0) : sqrt (x^2) = x :=
|
|
|
|
|
have sqrt (x^2)^2 = x^2, from sqrt_squared (squared_nonneg x),
|
|
|
|
|
eq_of_squared_eq_squared_of_nonneg (sqrt_nonneg (x^2)) H this
|
|
|
|
|
|
|
|
|
|
theorem sqrt_squared' (x : ℝ) : sqrt (x^2) = abs x :=
|
|
|
|
|
have x^2 = (abs x)^2, by krewrite [+pow_two, -abs_mul, abs_mul_self],
|
|
|
|
|
using this, by rewrite [this, sqrt_squared_of_nonneg (abs_nonneg x)]
|
|
|
|
|
|
|
|
|
|
theorem sqrt_mul {x y : ℝ} (Hx : x ≥ 0) (Hy : y ≥ 0) : sqrt (x * y) = sqrt x * sqrt y :=
|
|
|
|
|
have (sqrt (x * y))^2 = (sqrt x * sqrt y)^2, from calc
|
|
|
|
|
(sqrt (x * y))^2 = x * y : by rewrite [sqrt_squared (mul_nonneg Hx Hy)]
|
|
|
|
|
... = (sqrt x)^2 * (sqrt y)^2 : by rewrite [sqrt_squared Hx, sqrt_squared Hy]
|
|
|
|
|
... = (sqrt x * sqrt y)^2 : by krewrite [*pow_two]; rewrite [*mul.assoc,
|
|
|
|
|
mul.left_comm (sqrt y)],
|
|
|
|
|
eq_of_squared_eq_squared_of_nonneg !sqrt_nonneg (mul_nonneg !sqrt_nonneg !sqrt_nonneg) this
|