lean2/tests/lean/run/blast_simp_subsingleton.lean

43 lines
1 KiB
Text
Raw Normal View History

import data.unit
open nat unit
constant f {A : Type} (a : A) {B : Type} (b : B) : nat
constant g : unit → nat
example (a b : unit) : g a = g b :=
by simp
example (a c : unit) (b d : nat) : b = d → f a b = f c d :=
by simp
constant h {A B : Type} : A → B → nat
example (a b c d : unit) : h a b = h c d :=
by simp
definition C [reducible] : nat → Type₁
| nat.zero := unit
| (nat.succ a) := nat
constant g₂ : Π {n : nat}, C n → nat → nat
example (a b : C zero) (c d : nat) : c = d → g₂ a c = g₂ b d :=
by simp
example (n : nat) (h : zero = n) (a b : C n) (c d : nat) : c = d → g₂ a c = g₂ b d :=
by simp
-- The following one cannot be solved as is
-- example (a c : nat) (b d : unit) : a = c → b = d → f a b = f c d :=
-- by simp
-- But, we can use the following trick
definition f_aux {A B : Type} (a : A) (b : B) := f a b
lemma to_f_aux [simp] {A B : Type} (a : A) (b : B) : f a b = f_aux a b :=
rfl
example (a c : nat) (b d : unit) : a = c → b = d → f a b = f c d :=
by simp