2013-12-21 14:43:25 +00:00
|
|
|
Set: pp::colors
|
|
|
|
Set: pp::unicode
|
|
|
|
Set: pp::colors
|
|
|
|
Defined: TypeM
|
|
|
|
Defined: TypeU
|
|
|
|
λ (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), let b' : A := cast L2 b, L3 : b == b' := CastEq L2 b in L3 :
|
|
|
|
Π (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), b == cast L2 b
|
|
|
|
λ (A A' : TypeM)
|
|
|
|
(B : A → TypeM)
|
|
|
|
(B' : A' → TypeM)
|
|
|
|
(f : Π x : A, B x)
|
|
|
|
(g : Π x : A', B' x)
|
|
|
|
(a : A)
|
|
|
|
(b : A')
|
|
|
|
(H1 : (Π x : A, B x) == (Π x : A', B' x))
|
|
|
|
(H2 : f == g)
|
|
|
|
(H3 : a == b),
|
|
|
|
let L1 : A == A' := DomInj H1,
|
|
|
|
L2 : A' == A := Symm L1,
|
|
|
|
b' : A := cast L2 b,
|
|
|
|
L3 : b == b' := CastEq L2 b,
|
2013-12-22 02:23:37 +00:00
|
|
|
L4 : a == b' := HTrans H3 L3,
|
2013-12-21 14:43:25 +00:00
|
|
|
L5 : f a == f b' := Congr2 f L4
|
|
|
|
in L5 :
|
|
|
|
Π (A A' : TypeM)
|
|
|
|
(B : A → TypeM)
|
|
|
|
(B' : A' → TypeM)
|
|
|
|
(f : Π x : A, B x)
|
|
|
|
(g : Π x : A', B' x)
|
|
|
|
(a : A)
|
|
|
|
(b : A')
|
|
|
|
(H1 : (Π x : A, B x) == (Π x : A', B' x)),
|
2013-12-22 02:23:37 +00:00
|
|
|
f == g → a == b → f a == f (cast (Symm (DomInj H1)) b)
|