lean2/library/data/list/sort.lean

188 lines
7.5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Naive sort for lists
-/
import data.list.comb data.list.set data.list.perm data.list.sorted logic.connectives algebra.order
namespace list
open decidable nat
variable {A : Type}
variable (R : A → A → Prop)
variable [decR : decidable_rel R]
include decR
definition min_core : list A → A → A
| [] a := a
| (b::l) a := if R b a then min_core l b else min_core l a
definition min : Π (l : list A), l ≠ nil → A
| [] h := absurd rfl h
| (a::l) h := min_core R l a
variable [decA : decidable_eq A]
include decA
variable {R}
variables (to : total R) (tr : transitive R) (rf : reflexive R)
lemma min_core_lemma : ∀ {b l} a, b ∈ l b = a → R (min_core R l a) b
| b [] a h := or.elim h
(suppose b ∈ [], absurd this !not_mem_nil)
(suppose b = a,
assert R a a, from rf a,
begin subst b, unfold min_core, assumption end)
| b (c::l) a h := or.elim h
(suppose b ∈ c :: l, or.elim (eq_or_mem_of_mem_cons this)
(suppose b = c,
or.elim (em (R c a))
(suppose R c a,
assert R (min_core R l b) b, from min_core_lemma _ (or.inr rfl),
begin unfold min_core, rewrite [if_pos `R c a`], subst c, assumption end)
(suppose ¬ R c a,
assert R a c, from or_resolve_right (to c a) this,
assert R (min_core R l a) a, from min_core_lemma _ (or.inr rfl),
assert R (min_core R l a) c, from tr this `R a c`,
begin unfold min_core, rewrite [if_neg `¬ R c a`], subst b, exact `R (min_core R l a) c` end))
(suppose b ∈ l,
or.elim (em (R c a))
(suppose R c a,
assert R (min_core R l c) b, from min_core_lemma _ (or.inl `b ∈ l`),
begin unfold min_core, rewrite [if_pos `R c a`], assumption end)
(suppose ¬ R c a,
assert R (min_core R l a) b, from min_core_lemma _ (or.inl `b ∈ l`),
begin unfold min_core, rewrite [if_neg `¬ R c a`], assumption end)))
(suppose b = a,
assert R (min_core R l a) b, from min_core_lemma _ (or.inr this),
or.elim (em (R c a))
(suppose R c a,
assert R (min_core R l c) c, from min_core_lemma _ (or.inr rfl),
assert R (min_core R l c) a, from tr this `R c a`,
begin unfold min_core, rewrite [if_pos `R c a`], subst b, exact `R (min_core R l c) a` end)
(suppose ¬ R c a, begin unfold min_core, rewrite [if_neg `¬ R c a`], assumption end))
lemma min_core_le_of_mem {b : A} {l : list A} (a : A) : b ∈ l → R (min_core R l a) b :=
assume h : b ∈ l, min_core_lemma to tr rf a (or.inl h)
lemma min_core_le {l : list A} (a : A) : R (min_core R l a) a :=
min_core_lemma to tr rf a (or.inr rfl)
lemma min_lemma : ∀ {l} (h : l ≠ nil), all l (R (min R l h))
| [] h := absurd rfl h
| (b::l) h :=
all_of_forall (take x, suppose x ∈ b::l,
or.elim (eq_or_mem_of_mem_cons this)
(suppose x = b,
assert R (min_core R l b) b, from min_core_le to tr rf b,
begin subst x, unfold min, assumption end)
(suppose x ∈ l,
assert R (min_core R l b) x, from min_core_le_of_mem to tr rf _ this,
begin unfold min, assumption end))
variable (R)
lemma min_core_mem : ∀ l a, min_core R l a ∈ l min_core R l a = a
| [] a := or.inr rfl
| (b::l) a := or.elim (em (R b a))
(suppose R b a,
begin
unfold min_core, rewrite [if_pos `R b a`],
apply or.elim (min_core_mem l b),
suppose min_core R l b ∈ l, or.inl (mem_cons_of_mem _ this),
suppose min_core R l b = b, by rewrite this; exact or.inl !mem_cons
end)
(suppose ¬ R b a,
begin
unfold min_core, rewrite [if_neg `¬ R b a`],
apply or.elim (min_core_mem l a),
suppose min_core R l a ∈ l, or.inl (mem_cons_of_mem _ this),
suppose min_core R l a = a, or.inr this
end)
lemma min_mem : ∀ (l : list A) (h : l ≠ nil), min R l h ∈ l
| [] h := absurd rfl h
| (a::l) h :=
begin
unfold min,
apply or.elim (min_core_mem R l a),
suppose min_core R l a ∈ l, mem_cons_of_mem _ this,
suppose min_core R l a = a, by rewrite this; apply mem_cons
end
omit decR
private lemma ne_nil {l : list A} {n : nat} : length l = succ n → l ≠ nil :=
assume h₁ h₂, by rewrite h₂ at h₁; contradiction
include decR
lemma sort_aux_lemma {l n} (h : length l = succ n) : length (erase (min R l (ne_nil h)) l) = n :=
have min R l _ ∈ l, from min_mem R l (ne_nil h),
assert length (erase (min R l _) l) = pred (length l), from length_erase_of_mem this,
by rewrite h at this; exact this
definition sort_aux : Π (n : nat) (l : list A), length l = n → list A
| 0 l h := []
| (succ n) l h :=
let m := min R l (ne_nil h) in
let l₁ := erase m l in
m :: sort_aux n l₁ (sort_aux_lemma R h)
definition sort (l : list A) : list A :=
sort_aux R (length l) l rfl
open perm
lemma sort_aux_perm : ∀ {n : nat} {l : list A} (h : length l = n), sort_aux R n l h ~ l
| 0 l h := by rewrite [↑sort_aux, eq_nil_of_length_eq_zero h]
| (succ n) l h :=
let m := min R l (ne_nil h) in
assert leq : length (erase m l) = n, from sort_aux_lemma R h,
calc m :: sort_aux R n (erase m l) leq
~ m :: erase m l : perm.skip m (sort_aux_perm leq)
... ~ l : perm_erase (min_mem _ _ _)
lemma sort_perm (l : list A) : sort R l ~ l :=
sort_aux_perm R rfl
lemma strongly_sorted_sort_aux : ∀ {n : nat} {l : list A} (h : length l = n), strongly_sorted R (sort_aux R n l h)
| 0 l h := !strongly_sorted.base
| (succ n) l h :=
let m := min R l (ne_nil h) in
assert leq : length (erase m l) = n, from sort_aux_lemma R h,
assert ss : strongly_sorted R (sort_aux R n (erase m l) leq), from strongly_sorted_sort_aux leq,
assert all l (R m), from min_lemma to tr rf (ne_nil h),
assert hall : all (sort_aux R n (erase m l) leq) (R m), from
all_of_forall (take x,
suppose x ∈ sort_aux R n (erase m l) leq,
have x ∈ erase m l, from mem_perm (sort_aux_perm R leq) this,
have x ∈ l, from mem_of_mem_erase this,
show R m x, from of_mem_of_all this `all l (R m)`),
strongly_sorted.step hall ss
variable {R}
lemma strongly_sorted_sort_core (to : total R) (tr : transitive R) (rf : reflexive R) (l : list A) : strongly_sorted R (sort R l) :=
@strongly_sorted_sort_aux _ _ _ _ to tr rf (length l) l rfl
lemma sort_eq_of_perm_core {l₁ l₂ : list A} (to : total R) (tr : transitive R) (rf : reflexive R) (asy : anti_symmetric R) (h : l₁ ~ l₂) : sort R l₁ = sort R l₂ :=
have s₁ : sorted R (sort R l₁), from sorted_of_strongly_sorted (strongly_sorted_sort_core to tr rf l₁),
have s₂ : sorted R (sort R l₂), from sorted_of_strongly_sorted (strongly_sorted_sort_core to tr rf l₂),
have p : sort R l₁ ~ sort R l₂, from calc
sort R l₁ ~ l₁ : sort_perm
... ~ l₂ : h
... ~ sort R l₂ : sort_perm,
eq_of_sorted_of_perm tr asy p s₁ s₂
section
open algebra
omit decR
lemma strongly_sorted_sort [ord : decidable_linear_order A] (l : list A) : strongly_sorted has_le.le (sort has_le.le l) :=
strongly_sorted_sort_core le.total (@le.trans A ord) le.refl l
lemma sort_eq_of_perm {l₁ l₂ : list A} [ord : decidable_linear_order A] (h : l₁ ~ l₂) : sort has_le.le l₁ = sort has_le.le l₂ :=
sort_eq_of_perm_core le.total (@le.trans A ord) le.refl (@le.antisymm A ord) h
end
end list