21 lines
758 B
Text
21 lines
758 B
Text
|
import hott data.sigma
|
||
|
open path sigma
|
||
|
|
||
|
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
||
|
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a}
|
||
|
|
||
|
definition path_sigma_dpair (p : a ≈ a') (q : p ▹ b ≈ b') : dpair a b ≈ dpair a' b' :=
|
||
|
path.rec_on p (λb b' q, path.rec_on q idp) b b' q
|
||
|
|
||
|
definition path_sigma (p : dpr1 u ≈ dpr1 v) (q : p ▹ dpr2 u ≈ dpr2 v) : u ≈ v :=
|
||
|
destruct u
|
||
|
(λu1 u2, destruct v (λ v1 v2, path_sigma_dpair))
|
||
|
p q
|
||
|
|
||
|
definition path_path_sigma_lemma' {p1 : a ≈ a'} {p2 : p1 ▹ b ≈ b'} {q2 : p1 ▹ b ≈ b'}
|
||
|
(s : idp ▹ p2 ≈ q2) : path_sigma p1 p2 ≈ path_sigma p1 q2 :=
|
||
|
begin
|
||
|
apply (path.rec_on s),
|
||
|
apply idp,
|
||
|
end
|