2014-12-01 05:16:01 +00:00
|
|
|
import logic
|
2014-10-15 01:19:34 +00:00
|
|
|
open tactic
|
|
|
|
|
2014-11-27 03:02:11 +00:00
|
|
|
theorem foo1 (A : Type) (a b c : A) (Hab : a = b) (Hbc : b = c) : a = c :=
|
2014-10-15 01:19:34 +00:00
|
|
|
begin
|
|
|
|
apply eq.trans,
|
|
|
|
rename Hab Foo,
|
2014-10-23 01:11:09 +00:00
|
|
|
apply Foo,
|
|
|
|
apply Hbc,
|
2014-10-15 01:19:34 +00:00
|
|
|
end
|
2014-11-27 03:02:11 +00:00
|
|
|
|
|
|
|
theorem foo2 (A : Type) (a b c : A) (Hab : a = b) (Hbc : b = c) : a = c :=
|
|
|
|
begin
|
|
|
|
apply eq.trans,
|
|
|
|
Hab ↦ Foo,
|
|
|
|
apply Foo,
|
|
|
|
apply Hbc,
|
|
|
|
end
|