2014-11-04 01:39:52 +00:00
|
|
|
import logic data.sigma
|
|
|
|
|
|
|
|
inductive point (A B : Type) :=
|
|
|
|
mk : Π (x : A) (y : B), point A B
|
|
|
|
|
|
|
|
inductive color [class] :=
|
|
|
|
red, green, blue
|
|
|
|
|
|
|
|
constant foo.{l} (A : Type.{l}) [H : decidable_eq A] : Type.{l}
|
|
|
|
|
|
|
|
constants a : num
|
|
|
|
|
|
|
|
section
|
|
|
|
universe variable l
|
|
|
|
variable A : Type.{l}
|
|
|
|
variable Ha : decidable_eq A
|
|
|
|
variable E : Type₂
|
|
|
|
include E
|
|
|
|
-- include Ha
|
|
|
|
|
2014-11-04 02:57:55 +00:00
|
|
|
structure point3d_color (B C : Type) (D : B → Type) extends point (foo A) B, sigma D renaming dpr1→y dpr2→w :=
|
2014-11-04 01:39:52 +00:00
|
|
|
mk :: (c : color) (H : x == y)
|
|
|
|
|
|
|
|
check point3d_color.c
|
|
|
|
|
|
|
|
check point3d_color.to_point
|
|
|
|
end
|
|
|
|
|
|
|
|
context
|
|
|
|
universe l
|
|
|
|
parameters A : Type.{l}
|
|
|
|
parameters B : Type.{l}
|
|
|
|
|
|
|
|
structure tst :=
|
|
|
|
mk :: (a : A) (b : B)
|
|
|
|
|
|
|
|
end
|