2014-07-19 19:09:47 +00:00
|
|
|
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
|
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
-- Author: Leonardo de Moura
|
|
|
|
|
import logic
|
|
|
|
|
|
|
|
|
|
namespace decidable
|
|
|
|
|
inductive decidable (p : Bool) : Type :=
|
|
|
|
|
| inl : p → decidable p
|
|
|
|
|
| inr : ¬p → decidable p
|
|
|
|
|
|
|
|
|
|
theorem induction_on {p : Bool} {C : Bool} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C
|
|
|
|
|
:= decidable_rec H1 H2 H
|
|
|
|
|
|
|
|
|
|
theorem em (p : Bool) (H : decidable p) : p ∨ ¬p
|
|
|
|
|
:= induction_on H (λ Hp, or_intro_left _ Hp) (λ Hnp, or_intro_right _ Hnp)
|
|
|
|
|
|
|
|
|
|
definition rec [inline] {p : Bool} {C : Type} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C
|
|
|
|
|
:= decidable_rec H1 H2 H
|
|
|
|
|
|
|
|
|
|
theorem decidable_true [instance] : decidable true
|
|
|
|
|
:= inl trivial
|
|
|
|
|
|
|
|
|
|
theorem decidable_false [instance] : decidable false
|
|
|
|
|
:= inr not_false_trivial
|
|
|
|
|
|
|
|
|
|
theorem decidable_and [instance] {a b : Bool} (Ha : decidable a) (Hb : decidable b) : decidable (a ∧ b)
|
|
|
|
|
:= rec Ha
|
|
|
|
|
(assume Ha : a, rec Hb
|
|
|
|
|
(assume Hb : b, inl (and_intro Ha Hb))
|
|
|
|
|
(assume Hnb : ¬b, inr (and_not_right a Hnb)))
|
|
|
|
|
(assume Hna : ¬a, inr (and_not_left b Hna))
|
|
|
|
|
|
|
|
|
|
theorem decidable_or [instance] {a b : Bool} (Ha : decidable a) (Hb : decidable b) : decidable (a ∨ b)
|
|
|
|
|
:= rec Ha
|
|
|
|
|
(assume Ha : a, inl (or_intro_left b Ha))
|
|
|
|
|
(assume Hna : ¬a, rec Hb
|
|
|
|
|
(assume Hb : b, inl (or_intro_right a Hb))
|
|
|
|
|
(assume Hnb : ¬b, inr (or_not_intro Hna Hnb)))
|
|
|
|
|
|
|
|
|
|
theorem decidable_not [instance] {a : Bool} (Ha : decidable a) : decidable (¬a)
|
|
|
|
|
:= rec Ha
|
|
|
|
|
(assume Ha, inr (not_not_intro Ha))
|
|
|
|
|
(assume Hna, inl Hna)
|
2014-07-20 00:09:37 +00:00
|
|
|
|
|
|
|
|
|
theorem decidable_iff [instance] {a b : Bool} (Ha : decidable a) (Hb : decidable b) : decidable (a ↔ b)
|
|
|
|
|
:= rec Ha
|
|
|
|
|
(assume Ha, rec Hb
|
|
|
|
|
(assume Hb : b, inl (iff_intro (assume H, Hb) (assume H, Ha)))
|
|
|
|
|
(assume Hnb : ¬b, inr (not_intro (assume H : a ↔ b, absurd (iff_mp_left H Ha) Hnb))))
|
|
|
|
|
(assume Hna, rec Hb
|
|
|
|
|
(assume Hb : b, inr (not_intro (assume H : a ↔ b, absurd (iff_mp_right H Hb) Hna)))
|
|
|
|
|
(assume Hnb : ¬b, inl (iff_intro (assume Ha, absurd_elim b Ha Hna) (assume Hb, absurd_elim a Hb Hnb))))
|
|
|
|
|
|
|
|
|
|
theorem decidable_implies [instance] {a b : Bool} (Ha : decidable a) (Hb : decidable b) : decidable (a → b)
|
|
|
|
|
:= rec Ha
|
|
|
|
|
(assume Ha : a, rec Hb
|
|
|
|
|
(assume Hb : b, inl (assume H, Hb))
|
|
|
|
|
(assume Hnb : ¬b, inr (not_intro (assume H : a → b,
|
|
|
|
|
absurd (H Ha) Hnb))))
|
|
|
|
|
(assume Hna : ¬a, inl (assume Ha, absurd_elim b Ha Hna))
|