46 lines
933 B
Text
46 lines
933 B
Text
|
import algebra.ring data.nat
|
||
|
open algebra
|
||
|
|
||
|
variables {A : Type}
|
||
|
|
||
|
section
|
||
|
variables [s : add_comm_monoid A]
|
||
|
include s
|
||
|
|
||
|
attribute add.comm [forward]
|
||
|
attribute add.assoc [forward]
|
||
|
|
||
|
set_option blast.simp false
|
||
|
set_option blast.subst false
|
||
|
set_option blast.ematch true
|
||
|
|
||
|
theorem add_comm_three (a b c : A) : a + b + c = c + b + a :=
|
||
|
by blast
|
||
|
|
||
|
theorem add.comm4 : ∀ (n m k l : A), n + m + (k + l) = n + k + (m + l) :=
|
||
|
by blast
|
||
|
end
|
||
|
|
||
|
section
|
||
|
variable [s : group A]
|
||
|
include s
|
||
|
|
||
|
attribute mul.assoc [forward]
|
||
|
attribute mul.left_inv [forward]
|
||
|
attribute one_mul [forward]
|
||
|
|
||
|
set_option blast.simp false
|
||
|
set_option blast.subst false
|
||
|
set_option blast.ematch true
|
||
|
|
||
|
theorem inv_mul_cancel_left (a b : A) : a⁻¹ * (a * b) = b :=
|
||
|
by blast
|
||
|
|
||
|
attribute mul_one [forward]
|
||
|
attribute inv_mul_cancel_right [forward]
|
||
|
|
||
|
-- TODO(Leo): check if qfc can get this one
|
||
|
-- theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a⁻¹ = b :=
|
||
|
-- by blast
|
||
|
end
|