2015-10-19 23:03:32 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Author: Robert Y. Lewis
|
|
|
|
-/
|
|
|
|
|
|
|
|
import algebra.ring
|
2015-10-08 19:49:12 +00:00
|
|
|
open algebra
|
|
|
|
|
|
|
|
variable {A : Type}
|
|
|
|
|
2015-10-19 23:03:32 +00:00
|
|
|
definition add1 [s : has_add A] [s' : has_one A] (a : A) : A := add a one
|
|
|
|
|
|
|
|
theorem add_comm_four [s : add_comm_semigroup A] (a b : A) : a + a + (b + b) = (a + b) + (a + b) :=
|
|
|
|
by rewrite [-add.assoc at {1}, add.comm, {a + b}add.comm at {1}, *add.assoc]
|
|
|
|
|
|
|
|
theorem add_comm_middle [s : add_comm_semigroup A] (a b c : A) : a + b + c = a + c + b :=
|
|
|
|
by rewrite [add.assoc, add.comm b, -add.assoc]
|
|
|
|
|
|
|
|
theorem bit0_add_bit0 [s : add_comm_semigroup A] (a b : A) : bit0 a + bit0 b = bit0 (a + b) :=
|
|
|
|
!add_comm_four
|
|
|
|
|
|
|
|
theorem bit0_add_bit0_helper [s : add_comm_semigroup A] (a b t : A) (H : a + b = t) :
|
|
|
|
bit0 a + bit0 b = bit0 t :=
|
|
|
|
by rewrite -H; apply bit0_add_bit0
|
|
|
|
|
|
|
|
theorem bit1_add_bit0 [s : add_comm_semigroup A] [s' : has_one A] (a b : A) :
|
|
|
|
bit1 a + bit0 b = bit1 (a + b) :=
|
|
|
|
begin
|
|
|
|
rewrite [↑bit0, ↑bit1, add_comm_middle], congruence, apply add_comm_four
|
|
|
|
end
|
|
|
|
|
|
|
|
theorem bit1_add_bit0_helper [s : add_comm_semigroup A] [s' : has_one A] (a b t : A) (H : a + b = t) :
|
|
|
|
bit1 a + bit0 b = bit1 t :=
|
|
|
|
by rewrite -H; apply bit1_add_bit0
|
|
|
|
|
|
|
|
theorem bit0_add_bit1 [s : add_comm_semigroup A] [s' : has_one A] (a b : A) :
|
|
|
|
bit0 a + bit1 b = bit1 (a + b) :=
|
|
|
|
by rewrite [{bit0 a + _}add.comm, {a + _}add.comm]; apply bit1_add_bit0
|
|
|
|
|
|
|
|
theorem bit0_add_bit1_helper [s : add_comm_semigroup A] [s' : has_one A] (a b t : A) (H : a + b = t) :
|
|
|
|
bit0 a + bit1 b = bit1 t :=
|
|
|
|
by rewrite -H; apply bit0_add_bit1
|
|
|
|
|
|
|
|
theorem bit1_add_bit1 [s : add_comm_semigroup A] [s' : has_one A] (a b : A) : bit1 a + bit1 b = bit0 (add1 (a + b)) :=
|
|
|
|
begin
|
|
|
|
rewrite ↑[bit0, bit1, add1],
|
|
|
|
apply sorry
|
|
|
|
end
|
|
|
|
|
|
|
|
theorem bit1_add_bit1_helper [s : add_comm_semigroup A] [s' : has_one A] (a b t s: A)
|
|
|
|
(H : (a + b) = t) (H2 : add1 t = s) : bit1 a + bit1 b = bit0 s :=
|
|
|
|
begin rewrite [-H2, -H], apply bit1_add_bit1 end
|
|
|
|
|
|
|
|
theorem bin_add_zero [s : add_monoid A] (a : A) : a + zero = a := !add_zero
|
|
|
|
|
|
|
|
theorem bin_zero_add [s : add_monoid A] (a : A) : zero + a = a := !zero_add
|
|
|
|
|
|
|
|
theorem one_add_bit0 [s : add_comm_semigroup A] [s' : has_one A] (a : A) : one + bit0 a = bit1 a :=
|
|
|
|
begin rewrite ↑[bit0, bit1], rewrite add.comm end
|
|
|
|
|
|
|
|
theorem bit0_add_one [s : has_add A] [s' : has_one A] (a : A) : bit0 a + one = bit1 a := rfl
|
|
|
|
|
|
|
|
theorem bit1_add_one [s : has_add A] [s' : has_one A] (a : A) : bit1 a + one = add1 (bit1 a) := rfl
|
|
|
|
|
|
|
|
theorem bit1_add_one_helper [s : has_add A] [s' : has_one A] (a t : A) (H : add1 (bit1 a) = t) :
|
|
|
|
bit1 a + one = t :=
|
|
|
|
by rewrite -H
|
|
|
|
|
|
|
|
theorem one_add_bit1 [s : add_comm_semigroup A] [s' : has_one A] (a : A) :
|
|
|
|
one + bit1 a = add1 (bit1 a) := !add.comm
|
|
|
|
|
|
|
|
theorem one_add_bit1_helper [s : add_comm_semigroup A] [s' : has_one A] (a t : A)
|
|
|
|
(H : add1 (bit1 a) = t) : one + bit1 a = t :=
|
|
|
|
by rewrite -H; apply one_add_bit1
|
|
|
|
|
|
|
|
theorem add1_bit0 [s : has_add A] [s' : has_one A] (a : A) : add1 (bit0 a) = bit1 a :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add1_bit1 [s : add_comm_semigroup A] [s' : has_one A] (a : A) :
|
|
|
|
add1 (bit1 a) = bit0 (add1 a) :=
|
|
|
|
begin
|
|
|
|
rewrite ↑[add1, bit1, bit0],
|
|
|
|
rewrite [add.assoc, add_comm_four]
|
|
|
|
end
|
|
|
|
|
|
|
|
theorem add1_bit1_helper [s : add_comm_semigroup A] [s' : has_one A] (a t : A) (H : add1 a = t) :
|
|
|
|
add1 (bit1 a) = bit0 t :=
|
|
|
|
by rewrite -H; apply add1_bit1
|
|
|
|
|
|
|
|
theorem add1_one [s : has_add A] [s' : has_one A] : add1 (one : A) = bit0 one :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem add1_zero [s : add_monoid A] [s' : has_one A] : add1 (zero : A) = one :=
|
|
|
|
begin
|
|
|
|
rewrite [↑add1, zero_add]
|
|
|
|
end
|
|
|
|
|
|
|
|
theorem one_add_one [s : has_add A] [s' : has_one A] : (one : A) + one = bit0 one :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem subst_into_sum [s : has_add A] (l r tl tr t : A) (prl : l = tl) (prr : r = tr) (prt : tl + tr = t) :
|
|
|
|
l + r = t :=
|
|
|
|
by rewrite [prl, prr, prt]
|
|
|
|
|
|
|
|
-- multiplication
|
|
|
|
|
|
|
|
theorem mul_zero [s : mul_zero_class A] (a : A) : a * zero = zero :=
|
|
|
|
by rewrite [↑zero, mul_zero]
|
|
|
|
|
|
|
|
theorem zero_mul [s : mul_zero_class A] (a : A) : zero * a = zero :=
|
|
|
|
by rewrite [↑zero, zero_mul]
|
|
|
|
|
|
|
|
theorem mul_one [s : monoid A] (a : A) : a * one = a :=
|
|
|
|
by rewrite [↑one, mul_one]
|
|
|
|
|
|
|
|
theorem mul_bit0 [s : distrib A] (a b : A) : a * (bit0 b) = bit0 (a * b) :=
|
|
|
|
by rewrite [↑bit0, left_distrib]
|
|
|
|
|
|
|
|
theorem mul_bit0_helper [s : distrib A] (a b t : A) (H : a * b = t) : a * (bit0 b) = bit0 t :=
|
|
|
|
by rewrite -H; apply mul_bit0
|
|
|
|
|
|
|
|
theorem mul_bit1 [s : semiring A] (a b : A) : a * (bit1 b) = bit0 (a * b) + a :=
|
|
|
|
by rewrite [↑bit1, ↑bit0, +left_distrib, ↑one, mul_one]
|
|
|
|
|
|
|
|
theorem mul_bit1_helper [s : semiring A] (a b s t : A) (Hs : a * b = s) (Ht : bit0 s + a = t) :
|
|
|
|
a * (bit1 b) = t :=
|
|
|
|
begin rewrite [-Ht, -Hs, mul_bit1] end
|
|
|
|
|
|
|
|
theorem subst_into_prod [s : has_mul A] (l r tl tr t : A) (prl : l = tl) (prr : r = tr)
|
|
|
|
(prt : tl * tr = t) :
|
|
|
|
l * r = t :=
|
|
|
|
by rewrite [prl, prr, prt]
|
|
|
|
|
|
|
|
theorem mk_cong (op : A → A) (a b : A) (H : a = b) : op a = op b :=
|
|
|
|
by congruence; exact H
|
|
|
|
|
|
|
|
theorem mk_eq (a : A) : a = a := rfl
|