16 lines
424 B
Text
16 lines
424 B
Text
|
inductive formula :=
|
||
|
eqf : nat → nat → formula,
|
||
|
impf : formula → formula → formula
|
||
|
|
||
|
namespace formula
|
||
|
definition denote : formula → Prop,
|
||
|
denote (eqf n1 n2) := n1 = n2,
|
||
|
denote (impf f1 f2) := denote f1 → denote f2
|
||
|
|
||
|
theorem denote_eqf (n1 n2 : nat) : denote (eqf n1 n2) = (n1 = n2) :=
|
||
|
rfl
|
||
|
|
||
|
theorem denote_impf (f1 f2 : formula) : denote (impf f1 f2) = (denote f1 → denote f2) :=
|
||
|
rfl
|
||
|
end formula
|