lean2/tests/lean/interactive/num2.lean

41 lines
1.4 KiB
Text
Raw Normal View History

----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
----------------------------------------------------------------------------------------------------
import logic.classes.inhabited
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
inductive pos_num : Type :=
one : pos_num,
bit1 : pos_num → pos_num,
bit0 : pos_num → pos_num
theorem pos_num.is_inhabited [instance] : inhabited pos_num :=
inhabited.mk pos_num.one
namespace pos_num
definition inc (a : pos_num) : pos_num :=
rec (bit0 one) (λn r, bit0 r) (λn r, bit1 n) a
definition num_bits (a : pos_num) : pos_num :=
rec one (λn r, inc r) (λn r, inc r) a
end pos_num
inductive num : Type :=
zero : num,
pos : pos_num → num
theorem num.is_inhabited [instance] : inhabited num :=
inhabited.mk num.zero
namespace num
definition inc (a : num) : num :=
rec (pos pos_num.one) (λp, pos (pos_num.inc p)) a
definition num_bits (a : num) : num :=
rec (pos pos_num.one) (λp, pos (pos_num.num_bits p)) a
end num