lean2/library/init/simplifier.lean

93 lines
2.9 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Daniel Selsam. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Daniel Selsam
-/
prelude
import init.logic
namespace simplifier
namespace empty
end empty
namespace prove
attribute eq_self_iff_true [simp]
end prove
namespace unit_simp
open eq.ops
-- TODO(dhs): prove these lemmas elsewhere and only gather the
-- [simp] attributes here
variables {A B C : Prop}
lemma and_imp [simp] : (A ∧ B → C) ↔ (A → B → C) :=
iff.intro (assume H a b, H (and.intro a b))
(assume H ab, H (and.left ab) (and.right ab))
lemma or_imp [simp] : (A B → C) ↔ ((A → C) ∧ (B → C)) :=
iff.intro (assume H, and.intro (assume a, H (or.inl a))
(assume b, H (or.inr b)))
(assume H ab, and.rec_on H
(assume Hac Hbc, or.rec_on ab Hac Hbc))
lemma imp_and [simp] : (A → B ∧ C) ↔ ((A → B) ∧ (A → C)) :=
iff.intro (assume H, and.intro (assume a, and.left (H a))
(assume a, and.right (H a)))
(assume H a, and.rec_on H
(assume Hab Hac, and.intro (Hab a) (Hac a)))
-- TODO(dhs, leo): do we want to pre-process away the [iff]s?
/-
lemma iff_and_imp [simp] : ((A ↔ B) → C) ↔ (((A → B) ∧ (B → A)) → C) :=
iff.intro (assume H1 H2, and.rec_on H2 (assume ab ba, H1 (iff.intro ab ba)))
(assume H1 H2, H1 (and.intro (iff.elim_left H2) (iff.elim_right H2)))
-/
lemma a_of_a [simp] : (A → A) ↔ true :=
iff.intro (assume H, trivial)
(assume t a, a)
lemma not_true_of_false [simp] : ¬ true ↔ false :=
iff.intro (assume H, H trivial)
(assume f, false.rec (¬ true) f)
lemma imp_true [simp] : (A → true) ↔ true :=
iff.intro (assume H, trivial)
(assume t a, trivial)
lemma true_imp [simp] : (true → A) ↔ A :=
iff.intro (assume H, H trivial)
(assume a t, a)
-- lemma fold_not [simp] : (A → false) ↔ ¬ A :=
-- iff.intro id id
lemma false_imp [simp] : (false → A) ↔ true :=
iff.intro (assume H, trivial)
(assume t f, false.rec A f)
lemma ite_and [simp] [A_dec : decidable A] : ite A B C ↔ ((A → B) ∧ (¬ A → C)) :=
iff.intro (assume H, and.intro (assume a, implies_of_if_pos H a)
(assume a, implies_of_if_neg H a))
(assume H, and.rec_on H
(assume Hab Hnac, decidable.rec_on A_dec
(assume a,
have rw : @decidable.inl A a = A_dec, from
subsingleton.rec_on (subsingleton_decidable A)
(assume H, H (@decidable.inl A a) A_dec),
by rewrite [rw, if_pos a] ; exact Hab a)
(assume na,
have rw : @decidable.inr A na = A_dec, from
subsingleton.rec_on (subsingleton_decidable A)
(assume H, H (@decidable.inr A na) A_dec),
by rewrite [rw, if_neg na] ; exact Hnac na)))
end unit_simp
end simplifier