137 lines
4.8 KiB
Text
137 lines
4.8 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Author: Jeremy Avigad
|
|||
|
|
|||
|
The power operation on monoids and groups. We separate this from group, because it depends on
|
|||
|
nat, which in turn depends on other parts of algebra.
|
|||
|
|
|||
|
We have "pow a n" for natural number powers, and "ipow a i" for integer powers. The notation
|
|||
|
a^n is used for the first, but users can locally redefine it to ipow when needed.
|
|||
|
|
|||
|
Note: power adopts the convention that 0^0=1.
|
|||
|
-/
|
|||
|
import data.nat.basic data.int.basic
|
|||
|
|
|||
|
namespace algebra
|
|||
|
|
|||
|
variables {A : Type}
|
|||
|
|
|||
|
/- monoid -/
|
|||
|
|
|||
|
section monoid
|
|||
|
open nat
|
|||
|
variable [s : monoid A]
|
|||
|
include s
|
|||
|
|
|||
|
definition pow (a : A) : ℕ → A
|
|||
|
| 0 := 1
|
|||
|
| (n+1) := pow n * a
|
|||
|
|
|||
|
infix `^` := pow
|
|||
|
|
|||
|
theorem pow_zero (a : A) : a^0 = 1 := rfl
|
|||
|
theorem pow_succ (a : A) (n : ℕ) : a^(succ n) = a^n * a := rfl
|
|||
|
|
|||
|
theorem pow_succ' (a : A) : ∀n, a^(succ n) = a * a^n
|
|||
|
| 0 := by rewrite [pow_succ, *pow_zero, one_mul, mul_one]
|
|||
|
| (succ n) := by rewrite [pow_succ, pow_succ' at {1}, pow_succ, mul.assoc]
|
|||
|
|
|||
|
theorem one_pow : ∀ n : ℕ, 1^n = 1
|
|||
|
| 0 := rfl
|
|||
|
| (succ n) := by rewrite [pow_succ, mul_one, one_pow]
|
|||
|
|
|||
|
theorem pow_one (a : A) : a^1 = a := !one_mul
|
|||
|
|
|||
|
theorem pow_add (a : A) (m : ℕ) : ∀ n, a^(m + n) = a^m * a^n
|
|||
|
| 0 := by rewrite [nat.add_zero, pow_zero, mul_one]
|
|||
|
| (succ n) := by rewrite [add_succ, *pow_succ, pow_add, mul.assoc]
|
|||
|
|
|||
|
theorem pow_mul (a : A) (m : ℕ) : ∀ n, a^(m * n) = (a^m)^n
|
|||
|
| 0 := by rewrite [nat.mul_zero, pow_zero]
|
|||
|
| (succ n) := by rewrite [nat.mul_succ, pow_add, pow_succ, pow_mul]
|
|||
|
|
|||
|
theorem pow_comm (a : A) (m n : ℕ) : a^m * a^n = a^n * a^m :=
|
|||
|
by rewrite [-*pow_add, nat.add.comm]
|
|||
|
|
|||
|
end monoid
|
|||
|
|
|||
|
/- commutative monoid -/
|
|||
|
|
|||
|
section comm_monoid
|
|||
|
open nat
|
|||
|
variable [s : comm_monoid A]
|
|||
|
include s
|
|||
|
|
|||
|
theorem mul_pow (a b : A) : ∀ n, (a * b)^n = a^n * b^n
|
|||
|
| 0 := by rewrite [*pow_zero, mul_one]
|
|||
|
| (succ n) := by rewrite [*pow_succ, mul_pow, *mul.assoc, mul.left_comm a]
|
|||
|
|
|||
|
end comm_monoid
|
|||
|
|
|||
|
section group
|
|||
|
variable [s : group A]
|
|||
|
include s
|
|||
|
|
|||
|
section nat
|
|||
|
open nat
|
|||
|
theorem inv_pow (a : A) : ∀n, (a⁻¹)^n = (a^n)⁻¹
|
|||
|
| 0 := by rewrite [*pow_zero, inv_one]
|
|||
|
| (succ n) := by rewrite [pow_succ, pow_succ', inv_pow, inv_mul]
|
|||
|
|
|||
|
theorem pow_sub (a : A) {m n : ℕ} (H : m ≥ n) : a^(m - n) = a^m * (a^n)⁻¹ :=
|
|||
|
assert H1 : m - n + n = m, from nat.sub_add_cancel H,
|
|||
|
have H2 : a^(m - n) * a^n = a^m, by rewrite [-pow_add, H1],
|
|||
|
eq_mul_inv_of_mul_eq H2
|
|||
|
|
|||
|
theorem pow_inv_comm (a : A) : ∀m n, (a⁻¹)^m * a^n = a^n * (a⁻¹)^m
|
|||
|
| 0 n := by rewrite [*pow_zero, one_mul, mul_one]
|
|||
|
| m 0 := by rewrite [*pow_zero, one_mul, mul_one]
|
|||
|
| (succ m) (succ n) := by rewrite [pow_succ at {1}, pow_succ' at {1}, pow_succ, pow_succ',
|
|||
|
*mul.assoc, inv_mul_cancel_left, mul_inv_cancel_left, pow_inv_comm]
|
|||
|
|
|||
|
end nat
|
|||
|
|
|||
|
open int
|
|||
|
|
|||
|
definition ipow (a : A) : ℤ → A
|
|||
|
| (of_nat n) := a^n
|
|||
|
| -[n +1] := (a^(nat.succ n))⁻¹
|
|||
|
|
|||
|
private lemma ipow_add_aux (a : A) (m n : nat) :
|
|||
|
ipow a ((of_nat m) + -[n +1]) = ipow a (of_nat m) * ipow a (-[n +1]) :=
|
|||
|
or.elim (nat.lt_or_ge m (nat.succ n))
|
|||
|
(assume H : (#nat m < nat.succ n),
|
|||
|
assert H1 : (#nat nat.succ n - m > nat.zero), from nat.sub_pos_of_lt H,
|
|||
|
calc
|
|||
|
ipow a ((of_nat m) + -[n +1]) = ipow a (sub_nat_nat m (nat.succ n)) : rfl
|
|||
|
... = ipow a (-[nat.pred (nat.sub (nat.succ n) m) +1]) : {sub_nat_nat_of_lt H}
|
|||
|
... = (pow a (nat.succ (nat.pred (nat.sub (nat.succ n) m))))⁻¹ : rfl
|
|||
|
... = (pow a (nat.succ n) * (pow a m)⁻¹)⁻¹ :
|
|||
|
by rewrite [nat.succ_pred_of_pos H1, pow_sub a (nat.le_of_lt H)]
|
|||
|
... = pow a m * (pow a (nat.succ n))⁻¹ :
|
|||
|
by rewrite [inv_mul, inv_inv]
|
|||
|
... = ipow a (of_nat m) * ipow a (-[n +1]) : rfl)
|
|||
|
(assume H : (#nat m ≥ nat.succ n),
|
|||
|
calc
|
|||
|
ipow a ((of_nat m) + -[n +1]) = ipow a (sub_nat_nat m (nat.succ n)) : rfl
|
|||
|
... = ipow a (#nat m - nat.succ n) : {sub_nat_nat_of_ge H}
|
|||
|
... = pow a m * (pow a (nat.succ n))⁻¹ : pow_sub a H
|
|||
|
... = ipow a (of_nat m) * ipow a (-[n +1]) : rfl)
|
|||
|
|
|||
|
theorem ipow_add (a : A) : ∀i j : int, ipow a (i + j) = ipow a i * ipow a j
|
|||
|
| (of_nat m) (of_nat n) := !pow_add
|
|||
|
| (of_nat m) -[n +1] := !ipow_add_aux
|
|||
|
| -[ m+1] (of_nat n) := by rewrite [int.add.comm, ipow_add_aux, ↑ipow, -*inv_pow, pow_inv_comm]
|
|||
|
| -[ m+1] -[n+1] :=
|
|||
|
calc
|
|||
|
ipow a (-[ m+1] + -[n+1]) = (a^(#nat nat.succ m + nat.succ n))⁻¹ : rfl
|
|||
|
... = (a^(nat.succ m))⁻¹ * (a^(nat.succ n))⁻¹ : by rewrite [pow_add, pow_comm, inv_mul]
|
|||
|
... = ipow a (-[ m+1]) * ipow a (-[n+1]) : rfl
|
|||
|
|
|||
|
theorem ipow_comm (a : A) (i j : ℤ) : ipow a i * ipow a j = ipow a j * ipow a i :=
|
|||
|
by rewrite [-*ipow_add, int.add.comm]
|
|||
|
end group
|
|||
|
|
|||
|
end algebra
|