2015-01-30 00:30:07 +00:00
|
|
|
|
-- BEGINWAIT
|
|
|
|
|
-- ENDWAIT
|
|
|
|
|
-- BEGINWAIT
|
|
|
|
|
-- ENDWAIT
|
2015-01-30 17:45:20 +00:00
|
|
|
|
-- BEGININFO
|
2015-01-30 00:30:07 +00:00
|
|
|
|
-- TYPE|4|13
|
|
|
|
|
Type₁
|
|
|
|
|
-- ACK
|
|
|
|
|
-- TYPE|4|16
|
|
|
|
|
Prop
|
|
|
|
|
-- ACK
|
|
|
|
|
-- IDENTIFIER|4|16
|
|
|
|
|
true
|
|
|
|
|
-- ACK
|
|
|
|
|
-- ENDINFO
|
|
|
|
|
-- BEGINWAIT
|
|
|
|
|
-- ENDWAIT
|
|
|
|
|
-- BEGININFO
|
|
|
|
|
-- TYPE|4|13
|
|
|
|
|
Type₁
|
|
|
|
|
-- ACK
|
|
|
|
|
-- TYPE|4|16
|
|
|
|
|
Prop
|
|
|
|
|
-- ACK
|
|
|
|
|
-- IDENTIFIER|4|16
|
|
|
|
|
true
|
|
|
|
|
-- ACK
|
|
|
|
|
-- ENDINFO
|
|
|
|
|
-- BEGINFINDG
|
|
|
|
|
add.assoc|∀ (n m k : ℕ), n + m + k = n + (m + k)
|
|
|
|
|
-- ENDFINDG
|
|
|
|
|
-- BEGINWAIT
|
|
|
|
|
-- ENDWAIT
|
|
|
|
|
-- BEGINSHOW
|
|
|
|
|
import logic data.nat.basic
|
|
|
|
|
open nat eq.ops
|
|
|
|
|
|
|
|
|
|
definition a := true
|
|
|
|
|
|
|
|
|
|
theorem tst (a b c : nat) : a + b + c = a + c + b :=
|
|
|
|
|
calc a + b + c = a + (b + c) : _
|
|
|
|
|
... = a + (c + b) : {!add.comm}
|
|
|
|
|
... = a + c + b : (!add.assoc)⁻¹
|
|
|
|
|
-- ENDSHOW
|