37 lines
1.4 KiB
Text
37 lines
1.4 KiB
Text
|
import data.set.basic
|
||
|
open set
|
||
|
|
||
|
definition preimage {X Y : Type} (f : X → Y) (b : set Y) : set X := λ x, f x ∈ b
|
||
|
|
||
|
example {X Y : Type} {b : set Y} (f : X → Y) (x : X) (H : x ∈ preimage f b) : f x ∈ b :=
|
||
|
H
|
||
|
|
||
|
theorem preimage_subset {X Y : Type} {a b : set Y} (f : X → Y) (H : a ⊆ b) : preimage f a ⊆ preimage f b :=
|
||
|
λ (x : X) (H' : x ∈ preimage f a), show x ∈ preimage f b,
|
||
|
from @H (f x) H'
|
||
|
|
||
|
example {X Y : Type} {a b : set Y} (f : X → Y) (H : a ⊆ b) : preimage f a ⊆ preimage f b :=
|
||
|
λ (x : X) (H' : x ∈ preimage f a),
|
||
|
have f x ∈ a, from H',
|
||
|
have f x ∈ b, from mem_of_subset_of_mem H this,
|
||
|
this
|
||
|
|
||
|
example {X Y : Type} {a b : set Y} (f : X → Y) (H : a ⊆ b) : preimage f a ⊆ preimage f b :=
|
||
|
λ (x : X) (H' : x ∈ preimage f a),
|
||
|
have f x ∈ b, from mem_of_subset_of_mem H H',
|
||
|
this
|
||
|
|
||
|
example {X Y : Type} {a b : set Y} (f : X → Y) (H : a ⊆ b) : preimage f a ⊆ preimage f b :=
|
||
|
λ (x : X) (H' : x ∈ preimage f a),
|
||
|
@H (f x) H'
|
||
|
|
||
|
lemma mem_preimage_of_mem {X Y : Type} {f : X → Y} {s : set Y} {x : X} : f x ∈ s → x ∈ preimage f s :=
|
||
|
assume H, H
|
||
|
|
||
|
lemma mem_of_mem_preimage {X Y : Type} {f : X → Y} {s : set Y} {x : X} : x ∈ preimage f s → f x ∈ s :=
|
||
|
assume H, H
|
||
|
|
||
|
example {X Y : Type} {a b : set Y} (f : X → Y) (H : a ⊆ b) : preimage f a ⊆ preimage f b :=
|
||
|
take x, assume H',
|
||
|
mem_preimage_of_mem (mem_of_subset_of_mem H (mem_of_mem_preimage H'))
|