lean2/tests/lean/run/e3.lean

22 lines
391 B
Text
Raw Normal View History

definition Bool [inline] := Type.{0}
definition false := ∀x : Bool, x
check false
theorem false_elim (C : Bool) (H : false) : C
:= H C
definition eq {A : Type} (a b : A)
:= ∀ {P : A → Bool}, P a → P b
check eq
infix `=` 50 := eq
theorem refl {A : Type} (a : A) : a = a
:= λ P H, H
theorem subst {A : Type} {P : A -> Bool} {a b : A} (H1 : a = b) (H2 : P a) : P b
:= @H1 P H2